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The Efficient Use of Conditioning Information
in Portfolios

WAYNE E. FERSON and ANDREW F. SIEGEL*

ABSTRACT

We study the properties of unconditional minimum-variance portfolios in the pres-
ence of conditioning information. Such portfolios attain the smallest variance for a
given mean among all possible portfolios formed using the conditioning informa-
tion. We provide explicit solutions for n risky assets, either with or without a
riskless asset. Our solutions provide insights into portfolio management problems
and issues in conditional asset pricing.

SINCE THE PIVOTAL WORK of Markowitz (1959) and Sharpe (1964), mean vari-
ance analysis has been a central focus of financial economics. Mean variance
theory is used in portfolio analysis, asset pricing, investment performance
measurement, and topics in corporate finance. Mean variance analysis also
has other important economic applications. Problems involving quadratic
objective functions or loss functions generally incorporate a mean variance
analysis. Examples include economic policy under uncertainty, labor mar-
kets, monetary policy, inventory problems, hedging, resource economics, and
a host of other applications.

This paper provides solutions to mean variance optimization problems in
the presence of conditioning information. Conditioning information is present
when the optimal solution may be a function of information to be received
about the probability distribution of future outcomes. For example, empiri-
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cal studies in asset pricing identify lagged variables that have some power
in forecasting future stock and bond returns (see reviews by Ferson (1995),
Keim and Hawawini (1995), or Cochrane (1999)). Such variables represent
potential conditioning information. The efficient portfolio solution depends
on the conditional expectations.

When there is conditioning information, mean variance efficiency may be
defined in terms of the conditional means and variances (conditionally effi-
cient), or in terms of unconditional moments. When the objective is to max-
imize the unconditional mean relative to the unconditional variance, where
portfolio strategies may be functions of the information, we have uncondi-
tional mean variance efficiency with respect to the information.

Unconditional efficiency may be confusing because of the combination of
conditioning information, which may be employed by the efficient portfolio,
and the use of unconditional expectations about that portfolio’s returns. How-
ever, such an information structure is quite common, for example, when the
agent conducting a mean variance optimization uses more information than
is available to the observer of the outcomes. If the observer does not have the
conditioning information, he or she can only form unconditional expectations.

The type of information asymmetry that motivates unconditional effi-
ciency is prominent in the literature on portfolio management (e.g., Mayers
and Rice (1979)). Dybvig and Ross (1985) consider a portfolio manager who
is evaluated based on the unconditional mean and variance of the portfolio
return. The manager may use conditioning information about future returns
in forming the portfolio. They show that the manager’s conditionally effi-
cient portfolio will not appear efficient to the uninformed investor. The un-
conditionally efficient portfolio we derive is the one that maximizes the
measured performance.

The information structure that motivates unconditional efficiency can also
occur in economic policy problems, labor markets, and in other agency prob-
lems. Unconditional efficiency is also useful when a strategy depends on a
signal that will be, but has not yet been revealed to the agent. An econo-
metrician wishing to test an economic model also typically faces the problem
of using unconditional (or, less informed) expectations than the agents in the
model.

In this paper, we derive unconditionally mean variance efficient portfolio
strategies in closed form and illustrate their properties. The solutions are
nonlinear functions of the conditional means and conditional covariance ma-
trix of the returns, and may be written in a form analogous to the usual
mean variance solutions.

Hansen and Richard (1987) study mean-variance efficient sets and uncon-
ditional efficiency with respect to conditioning information. They show that
unconditionally efficient portfolios must be conditionally efficient, but not
the converse. Given our closed-form solutions, we show that an uncondition-
ally efficient portfolio maximizes a quadratic utility function for an agent
who observes the signal. Mean variance efficient sets may then be under-
stood by reference to the utility function that motivates a particular optimal
solution.
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We find that unconditionally efficient portfolio weights have interesting
properties. They behave similarly to other utility maximizing strategies when
the realization of the conditioning information is near the center of its dis-
tribution. For extreme signals about the returns of risky assets, the efficient
solution requires a conservative response. An extremely high expected re-
turn presents an opportunity to reduce risk by taking a small position in the
risky asset, without compromising the average portfolio performance. This
behavior is similar to the redescending influence curves used in robust sta-
tistics, and it contrasts with the characteristic sensitivity of traditional port-
folio strategies to extreme values.! The portfolio manager who is evaluated,
as is common in practice, on the basis of unconditional mean return relative
to unconditional return volatility (e.g., the Sharpe ratio), may be induced to
adopt a conservative response to extreme signals to maximize the measured
performance.

The results we develop are also valuable in the context of empirical asset
pricing. Bekaert and Liu (1999) note that our solution provides versions of
the Hansen-Jagannathan (1991) bounds that are robust to misspecification
of the conditional moments. Ferson and Siegel (1999) study the small sample
properties of various bounds with conditioning information, and find that
our solutions provide empirically attractive bounds. Ferson and Siegel (2000)
use our solutions to refine mean variance tests of portfolio efficiency. Be-
cause many problems in financial economics involve the determination of
minimum variance portfolios, our results should also prove useful in other
contexts.

The rest of the paper is organized as follows. Section I addresses the case
of one risky asset and one riskless asset. Section II provides a discussion and
interpretation of the efficient solution. The results are extended to the case
of n risky assets in Section III. Section IV concludes the paper.

I. An Example with One Risky and One Riskless Asset

Consider a model with two assets: a riskless asset (with rate of return r;)
and a risky asset. The risky asset’s return is

R=u(S)+s (1)

! Traditional mean-variance solutions tend to imply extreme positions in practice [e.g., Michaud
(1989), Best and Grauer (1991)]. Recent intertemporal portfolio models, such as Kim and Omberg
(1996) and Campbell and Viceira (1999), share this sensitivity. Green and Hollifield (1992)
point out the apparent contradiction, in view of asset pricing models such as the CAPM, in
which efficient portfolios should be well diversified. They then characterize the relation be-
tween diversification and mean-variance efficiency. Several approaches for reducing the sensi-
tivity of mean-variance solutions in practice have been proposed. These include using ad hoc
constraints on the portfolio positions (e.g., Frost and Savarino (1988)), and accounting for pa-
rameter uncertainty in a Bayesian framework (e.g., Bawa, Brown, and Klein (1979), Kandel
and Stambaugh (1996), and Barberis (2000)).
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where the conditioning information or signal is S (a random vector) and
w(S) is the conditional expected return. We assume that u(S) is not identi-
cally constant (almost surely). The noise term, &, is assumed to have condi-
tional mean of zero given S. The conditional variance of the return given S,
a2(8S), is also the conditional variance of &, which we allow to be a general
function of the signal. Thus, our results allow general forms of conditional
heteroskedasticity in returns, and normality is not required.

The weight function x = x(S) specifies the fraction invested in the risky
asset, as a function of the observed signal S. The portfolio has unconditional
expected return and variance given by

Mp = E["f"‘x(g)(iB —17)]

- - (2)
=1y + E{x(S)[n(S) —rpl}
and
op = E{[x(g)(R - rf)]z} —(pp— rf)z
= E{E[x*(S)(R — rp)?|S]} — (pp — 1p)? @)

= E{x*(S)ELR — rp)*|ST} — (np —1p)*
= E{x*(S)[(n(S) = rp)* + a2(S)]} = (up — rp)?,

where simplification follows in each case by iterated expectations, condition-
ing first on S.

The unconditionally mean variance efficient strategy is provided in the
following theorem.

THEOREM 1. For a given unconditional expected return, up, the unique port-
folio having minimum unconditional variance places the following weight on
the risky asset:

~ Mp—Tf /-'L(S)_rf
S) = — — |, 4
"8 = ((u(8>—rf)2+crf<8>> @

where the constant is

(u(S) —17)°
= E ~ ~ ’
‘ ((M(S) —rp)? + af<S)> )

and the minimized variance is op = (up — r4)*(1/ — 1).
Proof: The proof is a special case of Theorem 2, proven in the Appendix.

The constant { may be interpreted by its relation to the slopes of both the
conditional and unconditional mean-standard-deviation frontiers (see Jagan-
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Figure 1. The portfolio weight x(S) as a function of the conditional expected excess
return. The darker portion of the curve emphasizes the most likely signal values (£30g). The

expected return is up = 11.1 percent, with signal strength R? = 10 percent, where R2 = Var(u(S))/
Var(R), and R is the risky asset return.

nathan (1996)). Let the slope of the unconditional mean-standard-deviation
frontier, with respect to the information S, be

— -1/2
A:Max[M]:(l_l> _
x(S) op e

Let the slope of the conditional frontier, given S, be A(S) = ( ,u(§ ) — rf)/Ua(S ).
Simple algebra shows

1 1
=——=F| —m— 6
S 1/x* (1 + 1/A2(S)> (©

which is equation (16) of Jagannathan (1996).

II. Interpretation and Discussion
A. Characterizing the Unconditionally Efficient Strategy

The solution given by equations (4) and (5) has a number of interesting
features. This section illustrates some of these features, working with the
special case of homoskedasticity. In this case, 0.(S) = o, is a constant and
we denote the standard deviation of the signaled expected return w(S) as
0, Figure 1 illustrates an example of the efficient weight x(S) as a func-
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tion of the conditional expected excess return u(S) — r; for a given uncon-
ditional mean up equal to 11.1 percent per year.2

Figure 1 illustrates that when the conditional expected risk premium of
the risky asset is zero, the weight in the risky asset is zero. For signals
indicating a conditional expected excess return near zero, the uncondition-
ally efficient weight appears monotone and nearly linear in u(S). This is
similar to other utility-maximizing strategies.? For example, assuming a
normal distribution, the strategy that maximizes an exponential utility is
linear in the conditional expected return M(g)- Kim and Omberg (1996)
solve an intertemporal portfolio problem analytically, and find that the
portfolio weights are linear in the value function. The approximate solu-
tion to the intertemporal portfolio problem for Epstein-Zin (1989) prefer-
ences, as presented by Campbell and Viceira (1999), is also linear in the
state variable. Thus, traditional solutions to the portfolio optimization prob-
lem imply portfolio weights that are sensitive to extreme values of the
signal. For example, if the signal is normally distributed, a linear portfolio
weight is unbounded. Note, however, that the unconditionally efficient x(S)
is not monotone in ,u,(g); in particular, x(S) — 0 as ,u(S) — =+oo. After a
certain point, a more optimistic signal leads to purchasing less of the risky
asset when the objective is to attain a given unconditional mean return
with the smallest unconditional variance.

Figure 1 does not assume normality, but it does assume that o-s(g) is a
constant. Thus the precise shape of the curve depends on the homoskedas-
ticity assumption. However, according to equation (4), if an extreme value of
the signal is associated with a large conditional variance, the conservative
behavior of the strategy is reinforced relative to the homoskedastic example
in the figures. More generally, the solution for the n-asset example discussed
below implies that the portfolio weight should be a bounded function of the
signal except in pathological cases.

Although the efficient strategy described by (4) holds the unconditional
mean fixed at wp, the conditional expected return of this strategy, r, +
E[x(S)(R — rf)IS ], is a function of the signal S. This function is shown in
Figure 2, together with the efficient Welght x(S), for the case in which the
strength of the signal corresponds to R? = 10 percent, where R? = Var(u(S))/
Var(R). The conditional expected return of the unconditionally efficient
portfolio increases smoothly as the signal moves out of the region where
w(S) = 0, in either direction. In the limit, the amount of risky asset pur-

2 The example is matched to data for the period from 1963 to 1994. Over this period, the
average one-month Treasury bill rate is r, = 6.27 percent, the average return of the S&P500 is
11.1 percent per year, and the standard deviation is \laﬁ(s) + 02 = 14.6 percent. The optimal
portfolio with weight function x(S) achieves an expected return of up = 11.1 percent, but with
standard deviation reduced to 11.2 percent, with an R? value of 10 percent as defined by R? =

M(S)/((ru(S) + o).
3 We show below that the efficient strategy x(S) maximizes quadratic utility. Markowitz
(1991) argues that quadratic utility provides a good approximation to other utility functions in
portfolio choice models.
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Figure 2. The conditional expectation of the unconditionally efficient portfolio re-
turn continues to rise toward a limit (37.1 percent) even as the portfolio weight de-
clines towards zero. The unconditional expected return is up = 11.1 percent.

chased tends to zero in such a way that the conditional expected return
approaches the constant r, + (up — r;)/{ as u(S) — *oo. This upper limit
for the conditional expected return must exceed wp in order for the aver-
age, or unconditional expected return, to equal up.

B. Interpreting the Unconditionally Mean Variance Efficient Portfolio

One might be tempted to conclude that a very high signal, because its
probability is low, is not to be believed. That, however, is not the explanation
for the lack of monotonicity in Figures 1 and 2. In the current example,
when a high signal is received, it reliably indicates a high expected return.
Why not impose monotonicity on the weight function, and, for example, re-
fuse to let it descend at the right in Figure 1? One answer is because the
resulting portfolio would not be efficient. By using the nonmonotone port-
folio weight function, one could either attain a higher unconditional ex-
pected return for the same standard deviation, or, alternatively, attain a
lower standard deviation for the same expected return. The extra expected
return that might be achieved by buying aggressively when the signal is
high leads to additional risk. In other words, if the objective is to get the
smallest unconditional variance for a given average return, then a signal
that the expected return is unusually high presents an opportunity to re-
duce risk by purchasing a smaller amount of the risky asset, while main-
taining the portfolio average return.

It is intriguing to note the similarity between the portfolio weight as a
function of the signal, as in Figures 1 and 2, and the redescending influence
curve in robust M-estimation (Hampel (1974), Goodall (1983), and Carroll
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(1989)). Just as a robust estimator limits the statistical influence of an out-
lying data observation, the unconditionally efficient strategy limits the port-
folio influence of an extreme signal observation. The “conservative” response
of the unconditionally efficient strategy to an extreme signal suggests that
the portfolio rule might be relatively robust to estimation errors.*

Another explanation for why the risky asset weight turns back for ex-
treme signals comes from quadratic utility. It can be shown that for each up,
there exists a quadratic utility function for which our solution would be the
optimal strategy, if the expected utility conditional on the signal is maxi-
mized (see the Appendix for a proof). Intuitively, because quadratic utility
has increasing relative risk aversion, it aggressively avoids risk given ex-
treme investment returns.

It may be tempting to interpret the nonmonotonicity of the uncondition-
ally efficient strategy in Figures 1 and 2 as mirroring the negative marginal
utility of the quadratic utility for extremely high returns. When the weight
x(S) given by equation (4) is the optimal choice for an agent with a qua-
dratic utility function, the expected marginal utility of additional invest-
ment in the risky asset must be zero. Using the correspondence between up
and the utility function parameters derived in the Appendix, it may be shown
that the expected marginal utility of portfolio return at the point of maxi-
mum investment in the risky asset, conditional on the signal value, is

Mp —Tr ng(g)
{ (u(S)=rp?+02(8) )

which is positive when up — r, > 0. The quadratic-utility agent for whom the
unconditionally efficient solution is optimal does not become “satiated” as
the weight in the risky asset is reduced for extreme signals. This may also
be seen in Figure 2, which shows that the conditional mean return of the
unconditionally efficient portfolio continues to rise, even as the weight in
the risky asset is reduced, for extreme signals.

C. Conditional and Unconditional Efficiency Revisited

Hansen and Richard (1987) show that in the set of returns that can be
generated using conditioning information, an unconditionally minimum-
variance efficient strategy with respect to the information must be condi-
tionally efficient, but the reverse is not true. The relation of our solution to
quadratic utility provides a simple interpretation of this result. The relation
between conditional and unconditional efficiency may be understood in terms
of the utility functions for which the solutions are optimal.

4 An earlier version of this paper presented an out-of-sample experiment confirming this
intuition in the context of an investment strategy. Bekaert and Liu (1999) prove the robustness
in the context of the Hansen-Jagannathan (1991) bounds, and Ferson and Siegel (1999) confirm
it with simulation experiments on the bounds.
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We show in the Appendix that our unconditionally efficient portfolio max-
imizes the conditional expectation of a quadratic utility function in a single-
period problem. Because quadratic-utility agents choose mean-variance
efficient portfolios, this implies that the unconditionally efficient portfolio
must be a conditionally mean-variance efficient portfolio. However, other
utility functions can lead to mean-variance efficient portfolios. Consider the
exponential utility function, when returns are normally distributed condi-
tional on the signal. This utility maximization delivers a conditionally mean-
variance efficient portfolio as the solution. Because our solution for the
unconditionally efficient portfolio is unique, the exponential utility solution
cannot be the same as our solution. The exponential utility agent chooses a
conditionally mean-variance efficient portfolio that is not unconditionally
efficient. Thus, conditional efficiency does not imply unconditional efficiency.

IIT. Multiple Risky Assets

Consider n risky assets with returns R,...,R, and a riskless asset re-
turning r,. The ith asset has rate of return R;. In n X 1 column-vector no-
tation, we have

R=punl) +s. (7)

The noise term & is assumed to have conditional mean of zero given S, and
nonsingular conditional covariance matrix ¥.(S), an arbitrary function of
the signal S, thus allowing for general forms of conditional heteroskedas-
ticity. The conditional expected return vector w(S) is permitted to have a
singular or nonsingular (unconditional) covariance matrix, so there can be
any number of independent signals (more or fewer than n) about the fu-
ture asset returns.

Define portfolio P by letting the 1 X n row vector x'(S) = (xl(g), e ,xn(g))
denote the portfolio share invested in each of the n risky assets, investing
(or borrowing) at the riskless rate the amount 1 — x'(S)e, where e = (1,...,1)’
denotes the column vector of ones. The observed return on this portfolio will
be r, + x'(S)(R — rye), with unconditional expectation and variance (after
computing conditional expectations given S to eliminate the random noise
terms) as follows:

pp=rr + E[x'(S)(n(S) — rpe)] (8)
op = E{x' (S)[(1(S) = rre)(u(S) —rre) + Xo(S)]x(S)} = (up —14)?

I(ONA—1/Q o 2 (9)
=E[x"(S)A(S)x(S)] — (up — 1)
where we have defined the n X n matrix
AS) ={E[(R —rse)(R — rpe) |ST} !
(10)

= [(n(S) —rre)(u(S) —rpe) + g (S)I N
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In the multivariate case, the constant { (which does not depend upon the
signal S) is

{ = E[(p(S) — ree) AS)(n(S) — rre)]. (11)

THEOREM 2. Given the unconditional expected return up, n risky assets, and
a riskless asset, the unique portfolio having minimum unconditional vari-
ance is determined by the weights

£(8) = = (u(S) 1oy AGS). (12)
The portfolio variance is
1
b (1) .

Proof: See the Appendix.

The solution given by Theorem 2 provides portfolio weights that are bounded
functions of the conditional mean, w(S). In particular, x'(S)x(S) is bounded
for any value of the signal S that does not imply a singular conditional
covariance matrix. This generalizes the observation in Figure 1 that the
weights in the risky asset are conservative given extreme signal realizations.

A. No Riskless Asset

When there is no riskless asset, there are multiple equivalent represen-
tations for unconditionally mean-variance efficient portfolios.6® Any two port-
folios on the unconditional minimum-variance boundary can be combined
with fixed weights (i.e., not a function of the signal) to generate the entire
boundary (Hansen and Richard (1987)). One representation of the solution is

5To see this, note that it can be shown that

wp = rf>2 (1(S) = re) 251 (S)2 1 (S)(u(S) — rre)
¢ [1+ (u(S) —rpe) ¥ (S)(u(S) — rre)?
_ (up—rf>2 v'(8)D 1 (S)w(S) _ (up—rf>2 I (S)I?
¢ 1+ [»(S))?)? ¢ Anin(S) (1 + [#(S)]2)?

x'(S)x(S) :<

_ (up = T'f)2
4 (S)

where we have defined »(S) = \/D_I(S)U(S)[,u(g) — rye] using the decomposition Z;l(g) =
U'(S)D~Y(S)U(S), where D is diagonal and U is orthogonal, /\min(g ) is the smallest eigenvalue
of ¥.(S), and || denotes the L? norm. We assume that A, (S) is bounded away from zero for
all S, which implies that no signal can indicate a nearly singular conditional covariance matrix.

6 A previous working version of this paper provides alternative representations. These re-
sults are available on request.
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in the same basic form as in the previous section, using the global minimum-
variance portfolio in place of the riskless asset. We use the same notation as
in the previous section, except that we redefine the matrix A as follows:

AS) = [ERR'[S)] " =[n(S)u'(S) + Z(SN . (14)

Define portfolio P by letting x’ = x'(S) = (x 1(§ ), ... ,xn(g )) denote the shares
invested in each of the n risky assets, with the constraint that x'e = 1. The
observed return on this portfolio, Rp = x'(S)R, has expectation and variance
(after computing conditional expectations given S to eliminate the random
noise terms) as follows:

np=E[x'(S)u(S),

(15)
of = E{x"(S)[n(S)n'(S) + Xe(8)]x(S)} — n3.
Define the following portfolio constants:
_ E( 1 ) (16)
“T e'A(S)e ’
o = E <M> 17
e'A(S)e
—E{ ’(S)<A(»§)— M) (5)} (18)
A e’A(S)e a '

The parameters o4, @y, and a; may be considered analogues to the “efficient
set constants” in the classical mean-variance efficiency analysis that ignores
conditioning information (e.g., Ingersoll (1987)).

THEOREM 3: Given unconditional expected return up, n risky assets, and no
riskless asset, the unique portfolio having minimum unconditional variance
is determined by the weights

- 'A(S - - - A(S)ee’A(S
() = CAE) e M’(S)(A(S) - Lﬁ) (19)
e'A(S)e asg e'A(S)e
The variance of the portfolio defined by x(S) is
9 al 2a, 1-as ,
op=|\ag+ — | ———pup+t Mp. (20)
as as as

Proof: See the Appendix.
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CoROLLARY: The global minimum-variance portfolio has the following mean
and variance:

p=ag/(1 - ag). (21)
(0*)? = a; — a2/(1 — a3). (22)

Proof: This follows immediately by minimizing the quadratic function for
op as a function of up, as given in (20). Q.E.D.

IV. Summary and Conclusions

We derive unconditionally mean-variance efficient portfolios when the weights
may be a function of conditioning information. Specifically, we provide the func-
tional forms of the portfolio weights for three situations: (1) an economy with
one risky asset and one riskless asset, (2) an economy with n risky assets and
one riskless asset, and (3) an economy with n risky assets but no riskless asset.

We demonstrate that the unconditionally efficient portfolio weight is not
monotone in the realization of the signal about future returns, but is “con-
servative” in the face of an extreme signal. An extremely high conditional
mean return presents an opportunity to reduce the portfolio risk without
compromising its average performance. The solution implies an interesting
form of robustness. Our results are useful for asset pricing, portfolio perfor-
mance measurement, and other problems.

Appendix

Proof of Theorem 2: That the portfolio mean is up follows directly from
equations (8) and (12) and the definition of . The portfolio variance can be
found by substituting for just one x(S) term, then recognizing and substi-
tuting for the portfolio mean as follows:

op = E[x ()N (S)x(S)] = (up —1p)?

= %_”E[xmé)(m) —rre)] = (pp —rp)? (23)
_ 2 1
= % _(/-LP_rf)2:(/'LP_rf)2<Z_ 1)-

Now suppose that y(S) defines another portfolio Y that has the same mean
as P defined by x(S), so that up = uy. Consider the portfolio whose weights
are defined by y(S) — x(S); in particular, its variance cannot be negative.
We then have

oE=o0p+ Var[y’(g)(f% —rre) — x'(S)(R - rre)]
= 0¢ + 208 — 2Cov[ y'(S)(R — rse),x' (S)(R — rye)] (24)
o2 + 208 — 2E[y'(S)(R — rfe)(f? — rfe)’x(g)] +2(up — rf)Z.
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Substituting for R, using iterated expectations given S, then substituting for
x, we find

of =of+ 208 - 2E[y' (S)A (S)x(S)] + 2(up —14)?

Mp — Ty

= oy + 205 — 2 Ely' (S)(u(S) = rre)] + 2(up —14)*

25
(MP—’“f)2 25)

02+ 208 — 208 = 02,

which establishes that o2 = o and completes the proof. Q.E.D.

Proof of Theorem 3: The expected return of the portfolio defined by x may
be found as follows:

E(x'(S)R) = E[x'(S)u(S)]

e'A(S)u(S) L ke
e'A(S)e ag
Mp — Qg

:a2+a—a3:ﬂp. (26)
3

@ - - A(S)ee’A(S B
2 (8) <A<S> - M);L(S)]

e’A(S)e

The variance of the portfolio is computed by substituting for x(S) and using
the fact x'e = 1:

o = E[x"(S)A 1 (S)x(S)] — n?
_ E{x’(g)A‘l(g)l AS)e  pp—a <A(§) B A(S)ee’A(S))M(S)“

e'A(S)e as e'A(S)e
— wp (27)
x'(S)e Up — Qg - x'(S)ee'A(S) ~
-E . (§) - 2NN (§) | -
L'A(S)e T <x( NI )“( )] e
1 Mp — Gy ~ e,A(S) 5
-E _ "(§) - ——= S)| - uz.
L'A(S)e T <x( ) e'A(S)e>”( )] e

Continuing by taking the expectations, we find

9 Mp — Qg Mp — Qg 9
op =ap+ Mmp— g — Up
as ag

2
(£33 2(12 1 — 3 9
=<a1+—>——up+ Mp-
a3 a3 a3

(28)
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Next, suppose that y(S) defines another portfolio Y that has the same
mean as P defined by x, so that up = uy. Because variance cannot be neg-
ative, we have”

g =of+Var[y'(S)R — x'(S)R]
=g¢ + 204 — 2Cov[y'(S)R,x"(S)R] (29)
=of+20f - 2E[y' (S)RR'x(S)] + 2u}.

Substituting for R, taking conditional expectation given S, then substituting
for x, we find (using y'e = 1)

o =02+ 208 — 2E[y' (S)A 1 (S)x(S)] + 2u?

= o + 20f
- [ AS - ~ A(S)ee'A(S ~
Comly@ag)| A8 pem e, 5 ABIMS)) o
e'A(S)e Qg e'A(S)e
+2up
[ y'(S - - "(S)ee' A(S _
_ort2op—op| X8 ppmea (s YSeAS)) o
Le'A(S)e a3 e'A(S)e
+2up
[ 1 Up — Qg ~ e’A(S) -
=02+ 20— 2E — + "S)— —— | u(S)| +2u3
YEAOR TR oAS)e | a <y( ) e’A(S)e>“ )] e
=of+ 2082 a1+MP_a2,LLP—MP_a2a2]+2,u%
as ag
= 0y + 204 — 204 = 0y, (30)

which establishes that o2 = of. Q.E.D.

Proof of uniqueness: We argue that the solution x(S) for the uncondition-
ally efficient portfolio weight is unique, assuming that the conditional co-
variance of returns is nonsingular. For a given value of up, assume that
there is another solution, y(S), with E[y'(S)R] = up and Var[y'(S)R] =
Var[x'(S)R] = o 2. Both portfolios plot on the unconditional mean-standard
deviation boundary at the same point. Consider a portfolio combining these
two with a fixed weight, a. Any fixed-weight portfolio, combining two points
on the boundary, must also plot on the boundary (e.g., Hansen and Richard
(1987)); in this case, they plot at the same point because the portfolio mean
is still wp. Thus, 02 = a?0% + (1 — @)?0? + 2a(1 — a)o ?p, implying that the

7 Note that weights ¥ — % define an “arbitrage portfolio” return because they sum to zero, not
one. Of course, they do define a random variable that must have nonnegative variance.
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correlation, p, between x'(S)R and y'(S)R must be 1. That is, if we “regress”
one portfolio on the other, the error term is almost surely (a.s.) zero: y'(S)R =
a + b [x'(S)R] (a.s.). Equating the unconditional means and variances im-
pliesa =0 and b = 1. Thus y'(S)R = x'(S)R (a.s.). The assumption that the
conditional covariance matrix of R is nonsingular then implies that y'(S) =
x'(S) (a.s.). This follows from observing that if Cov(R|S) is nonsingular,
then, because Cov(R|S) is positive definite, Cov(R|S) + E(R|S)E(R’|S) is
positive definite. Finally, using the fact that y'(S)R = x'(S)R (a.s.), it fol-
lows that

0 = E{[(y"(S) —x"(S)RI[(y"(S) —x"(S)R]'|S}
= E{(y'(S) —x'(S))RR'(y(S) — x(S5))[S} (31)
= (y'(S) —x"(8))[Cov(R|S) + E(R[S)E(R'[S)](y(S) — x(S)).

Because this is a quadratic form with a positive definite matrix, it follows
that y(S) = x(S) (a.s.). Q.E.D.

Conditional quadratic utility maximization: We show that maximizing
the conditional expected value of a quadratic utility function is equivalent
to finding an unconditionally efficient portfolio for the case of n risky
assets and a riskless asset. (The extension to n risky assets and no risk-
less asset is straightforward.) The problem is to maximize E[u(Rp)|S]
where Rp = re + x'(S)(R — rre). The utility function is u(Rp) = a +
bRp — (c/2)R3. The first-order conditions, which are necessary and suffi-
cient for the maximization, are E{(b — cRp)[u(S) — r, + £]|S} = 0. Sub-
stituting the expression for Rp and solving for x(S), we obtain x'(S) =
(bfe — 1p) w' (S)A™L(S). This solution is equivalent to the solution given by
(12), in the sense that for a given up in (12), there exists a quadratic
utility with b/c = r, + [(up — r;)/{] that would choose the same portfolio.
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