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he recent financial crisis reminded

us that investing in financial

markets is risky business. It also

underlined the limitations of con-
ventional, asset allocation—based risk manage-
ment strategies. The swift, relentless correction
in equity, commodity, and real estate markets
was a clear example of why diversification,
both geographically and across assets classes,
is neither a sufficient nor reliable risk control
mechanism.

During crises, historical correlations
between asset classes and their volatility char-
acteristics tend to break down. Asset classes
that are uncorrelated in normal times suddenly
become correlated; alternative investments,
selected for their ability to generate alpha
without beta, suddenly deliver high beta with
little alpha. The phase-locking behavior that
occurred during the most recent crisis, coupled
with the jump in market volatility, resulted in
dramatic draw-downs for many investors and
put the spotlight on risk management. Increas-
ingly, investors are realizing the importance of
mitigating tail risk in order to achieve long-
term investment objectives. Most investors can
withstand an annual loss of 5% or even 10%,
but few are able to absorb another draw-down
like the one they suffered in 2008.

Historically, plan sponsors have relied on
the fixed-income component of their portfolios
to provide protection during equity-market
draw-downs. A balanced portfolio has proven

28 A CONSTANT-VOLATILITY FRAMEWORK FOR MANAGING TAIL RISK

to be a prudent and effective approach, a
Treasuries have consistently generated positiv
returns during periods of market correction:
But with long-term yields below 3%, ther
is clearly very limited upside potential to b
found in the Treasury market. Unfortunatel:
no other asset has offered the same de-couplin
with equities during periods of crisis.'

Now managers must learn to effectivel
cope with systematic risk, specifically tail risk
that cannot be diversified away and is increa:
ingly unpredictable.

In this article we present a novel, cosf
effective portfolio management approach th:
focuses on delivering returns with constant vol:
tility and without undue exposure to the risk ¢
fat tails.

TRADITIONAL TAIL-RISK
MANAGEMENT TECHNIQUES:
PORTFOLIO INSURANCE

An effective tail-risk hedge should po
sess two important characteristics: it must I
negatively correlated to asset returns ar
exhibit convex behavior to the upside durir
periods of market stress.

Typically, implementing tail-risk hedgir
has involved using equity put options. Unfo
tunately, the cost is often prohibitive, creatir
a significant drag on portfolio performanc
As an alternative to purchasing put optior
investors can also resort to dynamic portfol
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insurance strategies. The earliest dynamic portfolio insur-
ance model, proposed by Brennan and Schwartz [1979]
and Rubinstein and Leland [1981], consists of overlaying
a synthetic put option on the existing portfolio, then
delta managing the overall exposure. Other dynamic
strategies include the notorious constant proportion port-
folio insurance, an arguably more robust approach that
Black and Jones [1987] and Black and Perold [1992] have
proposed.

Although all dynamic hedging strategies are exposed
to some level of gap risk, there are numerous benefits to
dynamic hedging over buying put options. These advan~
tages include no broker premiums, no up-front costs,
complete flexibility to change, adjust, or remove the
hedge, and no exposure to counterparty risk. The fact
remains, however, that all portfolio insurance techniques
create a significant drag on portfolio performance.

How can investors protect their portfolios against
large draw-downs without relinquishing substantial
upside? The answer lies in properly understanding and
monitoring market volatility.

RE-THINKING VOLATILITY:
BLACK SWANS VERSUS WHITE SWANS

Many researchers and quantitative strategists
(including black swan enthusiast Nassim Taleb and his
dedicated followers) have long advocated the impor-
tance of giving greater consideration to distribution tails,
calling attention to the fact that traditional risk man-

agement methods typically underestimate tail events’
frequency and/or severity. Although the normality
assumption of asset returns certainly makes the math-
ematics a lot easier, it struggles to explain the empirical
evidence.

Modern portfolio theory (MPT) has been the
crux of the 60/40 strategic asset allocation paradigm,
which many plan sponsors employ in one form or
another. One of MPT’s key assumptions is that asset
returns follow a normal distribution with constant
volatility. But Exhibit 1, which plots levels of the
S&P 500 index and its implied volatility over the last
20 years, clearly shows that risk measured by implied
volatility does not remain constant but changes sig-
nificantly over time. Over the measurement period,
the VIX index ranged from less than 10% to a peak
of more than 80%.

The most recent financial crisis illustrates how
volatility’s tendency to vary over time affects MPT, and
in particular the associated tail-risk assumptions. Using
the average historical volatility of the S&P 500 as our
reference point, the October 2008 monthly decline in
U.S. equity markets is close to four standard deviations
away from its neighbors. Under the common assump-
tion that returns are normally distributed, a gap of four
standard deviations has a nearly 1 in 10,000 chance of
occurring, implying that a monthly loss of that magni-
tude should occur approximately once every 750 years.
From a statistical point of view, such a rare event is a
black swan.

ExHIBIT 1
S&P 500 Index and VIX (1990-2011)
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The actual S&P 500 returns over the last 80 years
show that October 2008 only ranks ninth in terms
of worst monthly performances, implying that such a
significant draw-down is much more likely than we
imagine. The assumption of normally distributed his-
torical returns clearly underestimates the probability of
tail events.

Two possible strategies might better characterize
and model the inherent risk in equity returns. The first
involves using complex statistical distributions based, for
example, on extreme value theory, to help parameterize
true tail risk. This is a highly quantitative approach
and represents a significant shift away from traditional
thinking.

The second, more appealing approach is to re-think
how we measure and interpret volatility within a tra-
ditional mean—variance framework. We think that the
prevailing market volatility level, not the historical level,
is the relevant measure. If we use the prevailing volatility
level as a reference point, the draw-down in October
2008 is an event that’s closer to one standard deviation.
October 2008 becomes much less of a black swan—just
an undesirable white one.

THE VOLATILITY OF VOLATILITY:
A STORY OF TWO TAILS

When we consider an asset’s historical return dis-
tribution, the volatility provides us with a measure of the
returns’ dispersion around the mean. Exhibit 2 illustrates
two normal distributions. The light grey line shows a
distribution with volatility (standard deviation) of 15%,
while the darker line shows a distribution with volatility
of 30%. The mean return for the two distributions is
the same, but the probability of a large loss (or gain)
is significantly higher for the 30% volatility distribu-
tion. In fact, the probability of losing 30% or more is
approximately eight times higher for the 30% volatility
distribution.

The two distributions do not necessarily represent
two different assets; in fact, they can represent the same
asset at two different points in time. Market conditions
change over time, and assets’ risk (volatility) profiles also
vary.

As market volatility increases, an asset’s return
distribution flattens and the tails appear to fatten, rela-
tive to their average historical distribution. As volatility

ExHIBIT 2

Comparison of Tail Risk for Normal Distributions with Different Volatilities
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increases, the probability of the asset undergoing large
swings also becomes much greater, and historical prob-
abilities no longer represent actual loss potential. The
temporal cumulative effect of variable volatility leads to
asymmetric tails, especially negative fat tails, in assets’
return distributions. Efficient frontier analysis/strategic
asset allocation based on a static measure of volatility
becomes relatively useless as a risk management tool.

Using Volatility to Smooth Returns
and Manage Tail Risk

Equity volatility is not constant, implying that a
portfolio’s risk level (and therefore the probability of
a large draw-down) is constantly changing. If we can
accurately measure the prevailing volatility level and
effectively hedge against changes in that volatility, we
can greatly reduce tail risk and potentially improve risk-
adjusted returns.

Because most assets tend to exhibit volatility clus-
tering, an asset’s recent (realized) volatility provides
useful information about near-term rigks. As Mandel-
brot [1963] noted, “large changes (in returns) tend to be
followed by large changes (in returns) of either sign, and
small changes tend to be followed by small changes.” An
abundance of literature discusses the notable dependence
and predictability of return volatility and its implications
on asset allocation, asset pricing, and risk management.
Andersen and Bollerslev [1998] reviewed the academic
literature on ARCH/GARCH volatility models; Ghy-
sels, Harvey, and Renault [1996] surveyed the literature
on stochastic volatility; Franses and van Dijk [2000]
provided an overview of regime-switching models for
volatility; and Andersen et al. [2003] is an excellent
reference for realized-volatility models.

Investors who use volatility for tail-risk hedging
purposes typically purchase variance swaps. Variance
swaps are over-the-counter (OTC) forward contracts on
volatility, in which the buyer agrees to swap a fixed vari-
ance level on a particular market index for actual realized
variance from purchase until the maturity date. Variance
swaps provide pure exposure to an asset’s realized vola-
tility. Investors use them to take views on future vola-
tility, capture the spread between realized and implied
volatility, and to hedge asset volatility exposure.

A tail-risk hedging strategy would involve pur-
chasing a basket of variance swaps on the market you're
hedging. The drawbacks: variance swaps are relatively
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illiquid, offer limited capacity, are subject to counter-
party risk, are priced based on the prevailing implied-
volatility level, and involve paying a generous brokerage
premium. Most recently, these instruments have gar-
nered much attention, so overwhelming demand on the
long side for variance swaps has made them extremely
expensive.

Another means of purchasing volatility exposure
is to directly trade an implied-volatility index-linked
instrument. The VIX Index is the often-quoted implied
volatility of traded options on the S&P 500 index. An
investor with a long position in the VIX will profit if
the level of implied volatility increases over the holding
period.

Unlike variance swap returns, a VIX strategy’s
return is not a function of the underlying asset’s realized
volatility, but simply the change in implied volatility.
The main difficulty in trading implied volatility-is that
the spot VIX index is not investable, and so investors
must acquire VIX exposure through futures contracts
(also packaged in VIX ETFs). These contracts have a
fixed maturity and therefore must be rolled, resulting in
significant costs due to the VIX term-structure’s con-
tango nature. On the upside, VIX futures contracts are
exchange traded, and counterparty risk is much less than
on variance swaps.

DYNAMIC EXPOSURE AND CONSTANT
VOLATILITY

Constant volatility’s underlying principle is to
systematically adjust exposure to a given asset (or asset
portfolio) conditional to its current volatility, in order
to maintain a pre-specified risk level. For example, if
we target a 12% risk level for a given asset and the asset’s
current volatility is 20%, we would lower our exposure
to the asset class by a commensurate amount to yield a
12% volatility, and vice versa if the current volatility is
lower than our target.

The rationale for maintaining a constant volatility is
twofold. First, most significant market corrections have
been preceded by an increase in market volatility. By
conditioning their exposure market volatility, investors
can dampen the impact of a market correction. Second,
empirical evidence shows that asset returns tend to
be greater during periods of low volatility. Most bull
markets have been characterized by extended periods
of below-average volatility. Markets generally trend
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upwards in an organized, relatively smooth pattern.
During these periods, investors should maximize asset
exposure, taking advantage of a favorable risk—reward
tradeoff. As volatility increases, decrease asset exposure
to maintain the desired risk level.

Other authors have proven that using volatility
as a risk-conditioning, portfolio-optimizing strategy is
extremely efficient. Fleming, Kirby, and Ostdiek [2001,
2003] studied the economic value of volatility timing
and found that volatility-timing strategies outperform a
static portfolio in a mean—variance optimization frame-
work. More recently, Cooper [2010] defined the vola-
tility of volatility “vovo” and identified trading strategies
using leveraged ETFs to target the desired risk exposure.
The author concluded that constant volatility strategies
are able to profit from the upside of leverage, without
a1l the downside. In effect, Cooper [2010] founds that
risk smoothing can generate alpha, due to volatility’s
predictability.

Although these results clearly support the predict-
ability and use of volatility as a conditioning variable, we
are still confronted with the problem of translating the
prevailing volatility level to a level of portfolio exposure.
To address this issue, we propose an innovative approach
based on the payoff distribution mo del (PDM) to target
2 constant level of portfolio volatility and control the
risks related to the distribution’s higher moments.

THE PAYOFF DISTRIBUTION MODEL

Dybvig [1988] introduced the PDM to price and
evaluate the distribution of consumption for a given port-
folio. The author proposed a new performance measure
that allowed preferences to depend on all the moments of
a distribution, providing a richer framework for decision-
making than the traditional mean—variance approach. In
this article we extend the PDM to a more general port-
folio- and risk-management methodology. The PDM lets
us derive and price any contingent claim on an under-
lying asset or asset pool.

We use the PDM to solve for the payoff function
that provides us with the target return density condi-
tional to the underlying asset’s distributional properties.
In effect, it provides us with the distortion that must
be applied to the underlying asset’s distribution to gen-
erate the desired distributional properties. We employ
the methodology proposed in Papageorgiou et al. [2008]
to replicate such distribution payoffs by delta-managing
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the underlying asset. By construction, the aggregation of
monthly payoffs will deliver the specified target density
over the long term.

To begin the PDM approach, we derive the
monthly payoff structure for the target distribution.
For a constant-volatility fund, we target a normal dis-
tribution and volatility level. Once the monthly payoff
structure is determined, we dynamically adjust the port-
folio exposure to the underlying asset to achieve two
key objectives: 1) a constant volatility level, regardless
of the prevailing volatility level in the market; and 2)
a normal distribution of monthly returns, in order to
“pormalize” the fat-tailed distribution of the underlying
Jsset. In Amin and Kat [2003], the authors showed that
given an underlying asset S, with monthly returns
R, and a target distribution F there exists a func-
tion g(R,,,,.) such that the distribution of g (.) is the same
as the distribution F,, . This payoff’s return function g
is calculated using the distribution function F_, of the
underlying asset and the marginal distribution function
of the targeted distribution F .

The exact expression for g is given by

g(x) = P_.fj;rget(PUnder (x))’vx € R

Instead of being written on the price of the under-
lying like traditional call and put options, this payoff
function g is written on the underlying asset’s monthly
returns. This implies a more adapted payoff function
that integrates the asset’s entire risk profile.

MODEL IMPLEMENTATION

In this section, we present a brief overview of the
payoff distribution model and demonstrate how the
model can be used to derive the required exposure that
implementing the target volatility strategy requires.

The steps required to generate a synthetic fund
with a targeted normal distribution and constant vola-
tility are as follows:

1. Define the underlying asset or fund and (if required) its
tradable proxies. We will restrict our study to equity
and commodity indices where listed futures con-
tracts are available.

2. Select the desired statistical properties of the target fund.
We target a normal distribution of monthly return:
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and a pre-specified volatility level to illustrate the
strategy’s benefits.

3. Estimate the daily process of the underlying asset return
and infer its monthly distribution. To adapt the meth-
odology of Papageorgiou et al. [2008] to a dynamic
volatility environment, we model the daily returns
of the underlying assets as a simple GARCH (1.1)
process. This model lets us capture two specific
volatility features: the short-term serial correla-
tion and the long-run mean reversion. GARCH
family models have been widely employed in the
finance industry to characterize the evolution
of return variability. We could have used more
adapted GARCH models, such as NGARCH or
EGARCH, but we opted to keep the modeling
approach relatively simple, to better highlight
advantages of the hedging methodology.

The GARCH (1,1) can be written under the phys-
ical measure such as:

log—2# =R =p+0,€, e~iidN(1I)
Llinder 1—1
2 2 2 q
o =w+po,_ +o(R_ —W), with o+ P < 1
where S, . 1is the level of the underlying asset at time

t (in days) and R, is the daily log-return.

We estimate the parameters using standard maxi-
mum-likelihood maximization. We perform the estima-
tion every month, using all available data.

4, Derive the targeted distribution’s monthly payoff. The
payoff—the function g—carr de wricter i dased
form, such as:

x -
g(x) = u’]"npng + G';'d,gﬁ * (D_l (D __._!.L-Mr- ;
GUrrrJer

with x the monthly underying return

where
Mo e 19 the monthly targeted expected return. For
the sake of simplicity, we set [, = Ky,
K, ,, is the monthly expected return of the under-
lying asset, computed as the historical expected
return.
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O, ., 15 the monthly volatility of the underlying
asset, set as the possible levels of forecasted volatility
of the underlying asset at the end of the month.

O e 15 thE targeted monthly volatility that will
allow the constant-volatility property.

@ is the standard normal cumulative distribution

function and @' its inverse.

5. Derive the hedging strategy throughout the month. In
essence, the dynamic trading strategy distorts the
undetlying asset’s distribution so as to generate the
desired payoff. We price and derive the replica-
tion strategy by minimizing the root mean square
hedging error, using a Monte Carlo approach under
the real probability measure. As a discrete time-
hedging strategy, we compute delta surfaces for every
trading day during the month. The required expo-
sure is conditional to the underlying asset’s GARCH
forecasted volatility and cumulative month-to-date
performance. For more details on the hedging meth-
odology, see Papageorgiou et al. [2008].

IMPLEMENTING A CONSTANT VOLATILITY
OVERLAY ON A PORTFOLIO

The constant volatility framework can also be
implemented on top of an existing asset portfolio. To
do so, we must define tradable benchmarks representing
the assets in the portfolio and use an overlay of long and
short futures contracts to adjust the portfolio’s market
exposures to target a pre-specified distribution and vola-

~ tility level.

The overlay does not in any way impact the stra-
tegic asset- or manager-allocation decisions or affect the
portfolio’s alpha component. It simply aims to smooth
exposure to market (beta) risk. The strategy can be
implemented using exchange-traded futures contracts,
eliminating any potential liquidity constraints, capacity
constraints, or counterparty risk and offering full trans-
parency with minimal transaction costs.

RESULTS

We analyzed a globally diversified equity portfolio®
(40% S&P 500 Index, 35% MSCI EAFE Index, 10%
Russell 2000 Index, 10% MSCI EM Index, 5% S&P/
TSX 60 Index), one with a 12% target volatility level,
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selected because it is close to the median volatility level
over the sample period. We provide robustness tests with
respect to both the specified volatility level and the com-
position of the underlying portfolio.

Exhibit 3 illustrates the advantages of imple-
menting a 12% constant-volatility strategy on a global
diversified equity portfolio. The shaded area displays
the cumulative return of the benchmark equity port-
folio, while the darker line represents the cumulative

return of a 12% constant-volatility portfolio. To better
illustrate the evolution of the excess return generated
by the constant-volatility strategy, Exhibit 4 displays
the cumulative difference between the returns on the
equity portfolio and the constant-volatility strategy over
the sample period.

Exhibit 5 illustrates the out-of-sample GARCH
volatility modeled on the monthly returns of the
globally diversified equity portfolio returns and the

ExHIiBIT 3

Cumulative Performance of the Equity Portfolio and Constant-Volatility Strategy (1990-2011)
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ExHIBIT 4

Cumulative Difference between the Equity Portfolio and Constant-Volatility Strategy (1990-2011)

180% -~
160% -
140% -
120% -
100% -+
80% -
60% -
40% -

Monthly Cumulative Performance

o o > ©
RN, SN AN

S

© ® o
qS’QD‘ P

E Cste. Volatility Strategy - Equity Portfolio ‘

34 A CONSTANT-VOLATILITY FRAMEWORK FOR MANAGING TAIL RUISK

WINTER 2013




constant-volatility strategy. The constant-volatility sample period. We overlaid a graph of the volatility to

strategy’s realized volatility is on average slightly above provide some additional intuition into strategy dynamics.
the 12% target shown on the graph but is nowhere near During periods of low volatility, the strategy offered
the underlying portfolio’s realized volatility. an additional 50% of exposure to the underlying port-
Exhibit 6 displays the evolution of the constant- folio. During the highly volatile months of late 2008,
volatility strategy’s average monthly exposure over the the model removed nearly 80% of the exposure.

EXHIBIT 5

Monthly GARCH Volatility for the Equity Portfolio and Constant-Volatility Strategy (1990-2011)
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EXHIBIT 6

Monthly GARCH Volatility for the Equity Portfolio and Average Monthly Exposure for Constant-Volatility
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Exhibit 7 summarizes the two strategies’ per-
formance. We compute several perforrnanc'e and risk
measures, including the Sharpe ratio, omega ratio, and
95% one-month value at risk. In contrast to the Sharpe
ratio, the omega ratio introduced by Keating and Shad-
wick [2002] relaxes the hypothesis that returns follow a
Gaussian distribution. This measure leads to a full char-
acterization of the distribution’s risk-reward properties
by measuring the overall impact of all moments.”

The numbers confirm the constant volatility fund’s
superior risk-adjusted return: the Sharpe ratio increases from
0.26 to 0.37 and the omega ratio goes from 1.46 to 1.60.
The worst draw-downs are much smaller, on both a monthly
and annual basis. The constant volatility approach essentially
climinates the return distribution’s higher moments (skew
and excess kurtosis), essentially rendering the distribution
normal. We present two common normality tests to test for
the Gaussian nature of the monthly returns series. Both tests
exhibit high P-values for the constant-volatility strategy,
which won’t allow us to reject the normal distribution
assumption for returns at the 5% level.!

Exhibit 8 highlights the performance of the con-
stant-volatility strategy during the two largest market
draw-downs during the sample period: the tech bubble
collapse and the recent financial crisis.

ExHIBIT 7

Descriptive Statistics for Equity Portfolio
and Constant-Volatility Strategy (1990-2011)

Base Equity T 12%
Portfolio Const. Vol. Strategy
Ann, Return 6.84 8.22
Ann. Volatility 15.65 13.34
Sharpe Ratio 0.26 0.37
Omega Ratio 1.46 1.60
Skew -0.71 0.21
Excess Kurtoss 1.55 —0.20
Correlation 100.00 92.94
Worst Month —18.80 -8.51
Best Month 12.02 12.79
Worst Year —38.94 -25.07
Best Year 37.01 38.33
95%VaR 1-Month —7.85 -5.43
Jarque-Bera P-value 0.10 . 25,49_
Liliefors P-value 0.27 45.90
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EXHIBIT 8
Performance During Draw-Downs

Tech Bubble
(August 2000 to March 2003)
Maximuom Months to
Draw-down Recovery
Base Equity Portfolio 41.00% 27
Cons. Vol. Strategy 37.32% 20

Financial-Crisis
(October 2007 to March 2009)
Base Equity Portfolio 52.36% —
Const. Vol. Strategy | 35.76% 24

During the recent credit crisis, the constant-vola-
tility fund greatly reduced the draw-down. As volatility
rose in 2008, the strategy progressively decreased market
exposure to maintain volatility at 12%, protecting the
portfolio when markets subsequently plunged.

During the bull markets in the late 1990s and from
2002 to 2007, the strategy actually overperformed the
base portfolio. This is because the level of realized vola-
tility during these up-trending markets was below the
12% target. Added leverage brought the risk exposure
back to the desired level.

During the 2000 to 2003 recession and market
correction, the strategy only provided marginal down-
side protection. This is not surprising, as markets drifted
downwards over an extended period of time with no
sustained increase in volatility.

VOLATILITY REGIMES AND ASSET RETURNS

The strategy not only controls risk but also reduces
it and improves returns, supporting previous findings
by Fleming et al. [2003] that there is economic value to
volatility timing. In this section we discuss the reasons
that the model was so effective during the sample period,
by studying the relationship between market returns and
volatility and considering some of the potential risks of
associated with the proposed approach.

To analyze the relationship between risk and return,
we use a hidden Markov model (HMM) to identify the
presence of three volatility regimes (high, medium, and
low) and to estimate parameters for the three regimes.
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ExHIBIT 9

Volatility Regimes for the Equity Portfolio
(1990-2011)
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Exhibit 9 presents the annualized average volatility and
the corresponding annualized return for each regime.
There is a clear trend across the three regimes;. The
high-volatility regime, which occurs 10% of the time,
produces an average volatility of 35% and an average
annualized return of —40%. Markets find themselves in
the medium volatility regime 44% of the time, where the

average volatility and average annualized return are 14%
and 2%, respectively. The low-volatility regime (46%
probability) offers by far the best risk—reward tradeoff,
with an average volatility of 7% and an average annual-
ized return of 23%.

At first, this relationship between returns and vola-
tility might seem counterintuitive, but it is not inconsis-
tent with financial theory. In modern portfolio theory,
expected returns—not actual returns—are related to
risk. When risk increases, prices should decline, to offer
investors higher expected returns. Actual returns should
be low when risk goes up, so that expected returns are
higher. Exhibit 10 demonstrates that bull markets tend to
last longer and develop over time, as market participants
become increasingly confident in equity returns. These
drawn-out periods of positive returns and low volatility
generate very significant capital appreciation.

In fact, most of the risk premium provided by
equity markets is extracted during these periods of low
volatility. In contrast, most major market declines are of
short duration and develop rapidly, as fear takes hold of
market participants. The sharp draw-downs are therefore
much more dramatic, with markedly higher volatility.

Although this relationship between returns and
volatility is robust and undoubtedly improves risk-ad-

ExHiBIiT 10

Cumulative Returns and Volatility Regimes for the Equity Portfolio
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ExuiBiT 11

Constant-Volatility Strategies for Different Target Volatilities (1990-2011)

E?]Tlsiiy Targeted Volatility

Portfolio 6% 8% 10% 12% 14% 16% 18% 20%
Ann, Return 6.84 530 6.73 741 8.22 9.45 9.71 11.12 11.05
Ann. Volatility 15.65 6.44 886 1112 1334 1537 17.11 19.90 22.12
95% VaR 1-Month ~7.85 _253 —348 -451 -543 —624 723 =797 899
Jarque-Bera P-value 0.10 3153 2133 2641 2540 2149 WAS 137 1285
Lilliefors P-value 0.27 3838 3740 4590 50.00 50.00  29.00

50.00

50.00

justed returns over the long term of any volatility-con-
trol strategy, it is by no means a necessary condition for
such a strategy to improve long-term performance.

Under some market conditions, a constant-volatility
strategy could hurt returns. For instance, depending on
the volatility target, the model could be levered during
an extended period of low volatility and lower-trending
markets, resulting in a potentially larger draw-down.
The approach would also deliver smaller returns (but not
necessarily on a risk-adjusted basis) if markets increased
with high volatility, as the model would not be fully
invested.

ROBUSTNESS TO TARGET VOLATILITY

Exhibit 11 shows the results of a target volatility
strategy that targets normal distributions and volatili-
ties, ranging from 6% to 20%, for the global diversified
equity portfolio.

The results are robust to different target volatility
values, although realized fund volatilities are slightly
higher than targeted values. This is because the strategy’s

monthly profits and losses are reinvested in the fund.

These out-of-sample results incorporate implementation
constraints, including financing and management costs,
and support the model’s ability to generate the desired
risk profile. Regardless of the target volatility level, all
funds’ monthly returns pass normality tests when we
use this approach. -

In analyzing Exhibit 11, we implemented the con-
stant-volatility strategy on a globally diversified index
portfolio and demonstrated the methodology’s robust-
ness for different target volatilities. Volatility changes
for a globally diversified portfolio can come from two
sources: changes in the volatility of one or more indices,
and/or changes in correlations between the indices. The
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proposed approach models the portfolio’s overall real-
ized volatility, it captures both these sources of vola-
tility shifts. The approach does not seek to disentangle
these two factors. Its focus is uniquely on measuring and
adjusting exposure in response to changes in portfolio-
level risk. This makes the model both parsimonious and
robust.

ROBUSTNESS TO INDICES

To illustrate the effectiveness of the constant-vol-
atility approach to managing tail risk and normalizing
return distributions, we implement the strategy on var-
ious equity indices and the GCSI commodity index on
an out-of-sample basis from January 1990 to December
2011. Exhibit 12 shows the results. For all assets we
target a normal distribution with a 14% monthly annu-
alized volatility.

These results strongly support the benefits of a
constant-volatility framework. Return normalization
is the most notable transformation to assets’ statistical
properties when we implement the payoft distribution
model. In all cases, both skew and excess kurtosis are
greatly reduced; both the Jarque—Bera and Lilliefors
tests indicate that the returns are Gaussian. Correlations
between the constant volatility funds and their under-
lying assets are always greater than 90%), demonstrating
that the dynamic leverage does not dramatically alter
the nature of the return series. It simply smoothes the
volatility exposure over time.

The 14% constant-volatility funds tend to under-
perform the underlying indices due to lower realized
volatility levels but deliver a superior risk-adjusted
return. Maximum draw-downs are greatly reduced
across all assets, demonstrating the important role that
controlling volatility can play in reducing tail risk.

WinTER 2013
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5.55
14.47
0.18
1.38
0.14
—0.01
93.54
-8.92

0

53
21.36

10.72
15.39

7.98
24.26

2.54
13.43
—-0.04

2.83
17.82
0.03
1.20
—0.41
0.90
100.00

7.64

14.20

7.12
1570
0.24
1.48
-0.78

7.50
13.81

8.09
19.88
0.30
1.43
-0.50

7.60
14.93
0.31
1.50
0.18
0.08

92.01
—10.98

8.22
15.22
0.34
1.56
—0.56
0.99

100.00

Ann. Return

13.81
-0.52

Ann, Volatility

Sharpe Ratio

0.17

—0.34

0.49
1.73

0.

0.28

0.28
1.52
—0.15
—0.04

93.57
=13:72

0.31
1.53
0.32
0.19
91.90
—8.97

1.31

-0.13

0.84
0.

0.89
—0.16

1.40 -
-0.69

1.20
0.03
~0.57

Omega Ratio
Skew

72

03

1.85
100.00

0.83
92.64
—B8.78
14.41

~D3TH

0.59

100.00
—23.83

0.16

95.38
-12.76

1.62
100.00

2.24

100.00
—20.41

0.86
100.00

Excess Kurtosis

93.51
—8.08

Correlation

-27.77

—29.29

—20.18

~20.80

—16.80

Worst Month
Best Month
Worst Year
Best Year

13.40
—23.08
32.26
—6.36
50.00
50.00

21.10

20.07
—41.11

14.19
=075

17.14
—53.18

30

.
=25.46

15.40
—=42.99

11.69
=31.17 =15.22
3418 3637

12.09

15.54
=18.02
38.00
—5.63

16.53
—33.79

47.29
—9.54

14.82

—25.04

11.44
=37.00

—42.80

50.31

42.68

41.51
-11.07

61.19
—6.25
' 50.00

78.58
—-12.15

34.59
—6.15

1261

39.29
—8.80

63.56
—6.38

42.91

37.58

-9.24

—5.84

—6.10

0.10  50.00

—8.08

2T

95% VaR 1-Month

0.10
17.52

0.10
0.14

6.63
50.00

0.10
0.10

0.39
448

6.76
2.38

0.25

0.12 |

Jarque-Bera P-value

0.63

50.00

1.82

50.00

Lilliefors P-value

1 50.00

39.58

020

—2011. The right-hand column shows the output of the 14% constant

%, the lefi-hand column shows the result of a direct investment in the asset over the period 1990

target fund on the asset.

Note: For each inde

volatility

CONCLUSION

Since the collapse of Lehman Brothers in 2008,
tail-risk hedging has become an increasingly important
concern for investors. Traditional approaches, such as
purchasing options or variance swaps as insurance, are
often expensive, illiquid, and result in a substantial drag
on performance. When volatility varies over time, asset
returns have been shown to behave in a non-normal
fashion, which increases the likelihood of negative tail
events for portfolios that maintain static asset allocation.
A more cost-effective, prudent approach to managing
risk involves actively managing portfolio exposure,
according to the prevailing volatility levels within the
underlying assets, to maintain a constant risk exposure.
Our robust methodology is based on Dybvig’s [1988]
payoff distribution model and targets a constant volatility
level, normalizing monthly returns. This approach to
portfolio and risk management can help investors obtain
desired risk exposures over the short and long term,
reduce tail-risk exposure, and (in general) increase the
portfolio’s risk-adjusted performance.

ENDNOTES

The authors wish to acknowledge Pavilion Advisory
Group Ltd. for its support as well as the Pavilion Advisory
Group Ltd. Quantitative Research and Institutional Con-
sulting teams for their input and comments.

'Other asset classes, such as hedge funds, private equity,
infrastructure and commodities, have, on occasion, provided
some protection against market draw-down, but no evidence
supports their inclusion in a portfolio as a effective tail-risk
hedge.

*For the sake of simplicity, we assume the portfolio is
fully currency hedged.

*The omega measure, €, involves partitioning returns
into loss and gain, above and below a given threshold. The
ratio is calculated as:

[Tl
j T Flx)dc

Q(r)=

where F is the cumulative distribution function and r the
threshold that divides the gain from the loss. In our case, r
is equal to zero.

“For a complete description of the normality tests we
used, refer to Jarque and Bera [1980] and Lilliefors [1967].
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