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Abstract

We analyze the existence of price manipulation and optimal trade execution strategies in a model for

an electronic limit order book with nonlinear price impact and exponential resilience. Our main results

show that, under general conditions on the shape function of the limit order book, placing deterministic

trade sizes at trading dates that are homogeneously spaced is optimal within a large class of adaptive

strategies with arbitrary trading dates. This extends results from our earlier work with A. Fruth. Perhaps

even more importantly, our analysis yields as a corollary that our model does not admit price manipulation

strategies. This latter result contrasts the recent findings of Gatheral [12], where, in a related but different

model, exponential resilience was found to give rise to price manipulation strategies when price impact is

nonlinear.

1 Introduction.

The problem of optimal trade execution is concerned with the optimal acquisition or liquidation of
large asset positions. In doing so, it is usually beneficial to split up the large order into a sequence
of partial orders, which are then spread over a certain time horizon, so as to reduce the overall price
impact and the trade execution costs. The optimization problem at hand is thus to find a trading
strategy that minimizes a cost criterion under the constraint of overall order trade execution within
a given time frame. There are several reasons why studying this problem is interesting.

First, liquidity risk is one of the least understood sources of financial risk, and one of its
various aspects is the risk resulting from price impact created by trading large positions. Due
to the nonlinear feedback effects on dynamic trading strategies, market impact risk is probably
also among the most fascinating aspects of liquidity risk for mathematicians. The optimal trade
execution problem allows studying market impact risk in its purest form. Moreover, the results
obtained for this problem can serve as building blocks in a realistic analysis of more complex
problems such as the hedging of derivatives in illiquid markets.
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Second, the mathematical analysis of optimal trade execution strategies can help in the ongoing
search for viable market impact models. As argued by Huberman and Stanzl [14] and Gatheral [12],
any reasonable market impact model should not admit price manipulation strategies in the sense
that there are no ‘round trips’ (i.e., trading strategies with zero balance in shares), whose expected
trading costs are negative. Since every round trip can be regarded as the execution of a zero-
size order, a solution of the optimal trade execution problem also includes an analysis of price
manipulation strategies in the model (at least as limiting case when the order size tends to zero).

In recent years, the problem of optimal trade execution was considered for various market
impact models and cost functions by authors such as Bertsimas and Lo [9], Almgren and Chriss [5,
6], Almgren [4], Obizhaeva and Wang [16], Almgren and Lorenz [7], Schied and Schöneborn [19],
Schied, Schöneborn, and Tehranchi [18], and our joint papers with A. Fruth [1, 2], to mention only
a few.

Here, we continue our analysis from [1, 2]. Instead of focussing on the two-sided limit order
book model in [2], our emphasis is now on a zero-spread market impact model that is obtained from
the one in [2] by collapsing the bid-ask spread. There are several advantages from introducing
this model. First, it is easier to analyze than the two-sided model, while it still allows to transfer
results to the two-sided framework;1 see Section 2.6. Second, most other market impact models in
the literature, such as those suggested by Almgren and Chriss [5, 6] or Gatheral [12], do not include
a bid-ask spread. Therefore, these models and their features can be compared much better to our
zero-spread model than to the two-sided model. Third, it is easier to detect model irregularities,
such as price manipulation strategies, in the zero-spread model. In the two-sided model such
irregularities may not emerge on an explicit level.

In our model, the limit order book consists of a certain distribution of limit ask orders at prices
higher than the current price, while for lower prices there is a continuous distribution of limit buy
orders. We consider a large trader who is placing market orders in this order book and thereby
shifts prices according to the volume of available limit orders. Since the distribution of limit orders
is allowed to be non-uniform, the price impact created by a market order is typically a nonlinear
function of the order size. In reaction to price shocks created by market orders there is a subsequent
recovery of the price within a certain time span. That is, the price evolution will exhibit a certain
resilience. Thus, the price impact of a market order will neither be completely instantaneous nor
entirely permanent but will decay exponentially with a time-dependent resilience rate. As in [2],
we consider the following two distinct possibilities for modeling the resilience of the limit order
book after a large market order: the exponential recovery of volume impact, or the exponential
recovery of price impact.

This model is quite close to descriptions of price impact on limit order books found in empirical
studies such as Biais et al. [10], Potters and Bouchaud [17], Bouchaud et al. [11], and Weber and
Rosenow [20]. In particular, the existence of a strong resilience effect, which stems from the
placement of new limit orders close to the bid-ask spread, seems to be a well established fact,
although its quantitative features seem to be the subject of an ongoing discussion.

While in [2] we considered only strategies whose trades are placed at equidistant times, we
now allow the trading times to be stopping times. This problem description is more natural than
prescribing a priori the dates at which trading may take place. It is also more realistic than the
idealization of trading in continuous time. In addition, the time-inhomogeneous description allows
us to account for time-varying liquidity and thus in particular for the well-known U-shape patterns
in intraday market parameters; see, e.g., [15].

1This technique was already used in [1, 2].
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Optimal trade execution in this extended framework leads to the problem of optimizing si-
multaneously over both trading times and sizes. This problem is more complex than the one
considered in [2] and requires new arguments. Nevertheless, our main results show that the unique
optimum is attained by placing the deterministic trade sizes identified in [2] at trading dates that
are homogeneously spaced with respect to the average resilience rate in between trades.

As a corollary, we show that neither of the two variants of our model admits price manipulation
strategies in the sense of Huberman and Stanzl [14] and Gatheral [12], provided that the shape
function of the limit order book belongs to a certain class of functions (which slightly differs for
each variant). This corollary is surprising in view of recent results by Gatheral [12]. There it was
shown that, in a closely related but different market impact model, exponential resilience leads to
the existence of price manipulation strategies as soon as price impact is nonlinear.

This paper is organized as follows. In Section 2.1 we introduce our market impact model with
its two variants. The cost optimization problem is explained in Section 2.2. In Section 2.3 we
state our main results for the case of a block-shaped limit order book, which corresponds to linear
price impact. This special case is much simpler than the case with nonlinear price impact. We
therefore give a self-contained description and proof for this case, so that the reader can gain a
quick intuition on why our results are true. The proofs for the block-shaped case rely on the results
from our earlier paper [1] with A. Fruth and are provided in Section 3.1. The main results for
the model variant with reversion of volume impact are stated in Section 2.4. The corresponding
proofs are given in Section 3.2. The results for the model variant with reversion of price impact
are stated in Section 2.5, while proofs are given in Section 3.3. In Section 2.6 we explain how our
results can be transferred to the case of a two-sided limit order book model.

2 Setup and main results

In this section we first introduce the two variants of our market impact model and formulate the
optimization problem. We then state our results for the particularly simple case of a block-shaped
limit order book. Subsequently, we formulate our theorems for each model variant individually.
Finally we explain how the results for the models described in Section 2.1 can be transferred to
the case of a non-vanishing bid-ask spread.

2.1 Description of the market impact models

The model variants that we consider here are time-inhomogeneous versions of the zero-spread
models introduced in [2, Appendix A]. The general aim is to model the dynamics of a limit order
book that is exposed to repeated market orders by a large trader, whose goal is to liquidate a
portfolio of X0 shares within a certain time period [0, T ]. The case X0 > 0 corresponds to a long
position and hence to a sell program, the case X0 < 0 to a buy program. Here we neglect the
bid-ask spread of the limit order book, but in Section 2.6 we will explain how our results can be
carried over to limit order book models with non-vanishing bid-ask spread. In these two-sided
models, buy orders only impact the ask side of the limit order book and sell orders only affect the
bid side. Nevertheless, we will see that the optimal strategies are the same as in the zero-spread
models.

When the large trader is inactive, the dynamics of the limit order book are determined by
the actions of noise traders only. We assume that the corresponding unaffected price process S0

is a rightcontinuous martingale on a given filtered probability space (Ω, (Ft),F ,P) such that S0
0
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is P-a.s. equal to some constant S0. The actual price process S is driven by the dynamics of S0

and by the response of the limit order book to the market orders of the large traders. The key to
modeling this response is to start by describing first the volume impact process E. If at time t the
trader places a market oder of size ξt, where ξt > 0 stands for a buy order and ξt < 0 for a sell
order, the volume impact process jumps from Et to

Et+ := Et + ξt. (1)

When the large trader is inactive in between market orders, E reverts back at a given rate. In our
first model variant, the Model with volume impact reversion, we assume that the volume impact
process reverts on an exponential scale with a deterministic, time-dependent rate t 7→ ρt, called
resilience speed. More precisely, we assume that

dEt = −ρtEt dt (2)

while the large investor is not placing buy orders. Equations (1) and (2) determine completely the
dynamics of the volume impact process E in our first model variant.

In the next step, we describe the relation between volume impact and price impact. To this
end, we assume a continuous distribution of bid and ask orders away from the unaffected price
S0

t . This distribution is described by a continuous function f : R → [0,∞) that satisfies f(x) > 0
for a.e. x, the shape function. Its intuitive meaning is that the number of shares offered at price
S0

t + x is given by f(x) dx. Thus, a volume impact of Et shares corresponds to a price impact of
Dt, which is given implicitly via ∫ Dt

0

f(x) dx = Et.

By introducing the antiderivative of f ,

F (y) :=

∫ y

0

f(x) dx, y ∈ R,

the relation between the volume impact process E and the price impact process D can be expressed
as follows:

Et = F (Dt) and Dt = F−1(Et). (3)

Here we have used our assumption that f > 0 a.e. so that F is indeed invertible. Given the price
impact process D, the actual price process S is defined as

St = S0
t +Dt. (4)

Thus, if at time t the trader places a market order of size ξt, then the price process jumps from St

to
St+ = S0

t +Dt+ = S0
t + F−1(Et + ξt);

see Figure 1. Hence, the price impact Dt+−Dt will be a nonlinear function of the order size ξt unless
f is constant between Dt and Dt+. The choice of a shape function that is constant throughout
R corresponds to linear market impact and to the zero-spread version of the block-shaped limit
order book model of Obizhaeva and Wang [16]. This zero-spread version was introduced in [1].

Instead of an exponential resilience of the volume impact as described in (2), one can also
assume an exponential reversion of the price impact D. This means that one has to replace (2) by

dDt = −ρtDt dt (5)

while the large investor is not placing buy orders. The resulting model variant will be called the
Model with price impact reversion. We now summarize the definitions of our two model variants.
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Figure 1: The price impact of a buy market order of size ξt > 0 is defined by the equation
ξt =

∫ Dt+

Dt
f(x) dx = F (Dt+) − F (Dt).

Definition 2.1. The dynamics of the Model with volume impact reversion are described by equa-
tions (1), (2), (3), and (4). The Model with price impact reversion is defined via equations (1),
(5), (3), and (4).2

With the reversion of the processes D and E as described in Equation (2) and (5) we model the
well-established empirical fact that order books exhibit a certain resilience as to the price impact
of a large buy market order. That is, after the initial impact the best ask price reverts back to
its previous position; cf. Biais et al. [10], Potters and Bouchaud [17], Bouchaud et al. [11], and
Weber and Rosenow [20] for empirical studies.

Note that we assume that the shape function of the limit order book is neither time-dependent
nor subject to additional randomness. This assumption is similar to the assumption of fixed, time-
independent impact functions in the models by Bertsimas and Lo [9], Almgren [4], or Gatheral [12].
It can also be justified at least partially by the observation that the shapes of empirical limit order
books for certain liquid stocks can be relatively stable over time. More importantly, it was noted
in [2] that our optimal strategies are remarkably robust with respect to changes in the shape
function f . One can therefore expect that a moderate randomization of f will only have relatively
small effects on the optimal strategy. A corresponding analysis will be the subject of future
research.

We now introduce three example classes for shape functions that satisfy the assumptions of our
main results.

Example 2.2 (Block shape). The simplest example corresponds to a block-shaped limit order
book:

f(x) ≡ q for some constant q > 0. (6)

It corresponds to the zero-spread version of the block-shaped limit order book model of Obizhaeva
and Wang [16], which was introduced in [1]. In this case, the price impact function is linear:
F−1(x) = x/q. It follows that the processes D and E are related via Et = qDt, and so the model
variants with volume and price impact reversion coincide. Results and proofs are particularly easy
in this case. We therefore discuss it separately in Section 2.3. ♦

2These models are respectively referred as Model 1 and 2 in [1, 2].
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Example 2.3 (Positive power-law shape). Consider the class of shape functions

f(x) = λ|x|α, where λ, α > 0. (7)

In this case, F (x) = λ
1+α

|x|1+αsign x, and so F−1(x) = (1+α
λ
|x|)1/(1+α)sign x. Hence price impact

follows a power law. The choice α = 1 corresponds to square-root impact, which is a particularly
popular choice and admits certain justifications; see [12]. See also [8] for empirical results on power-
law impact. We will see later that the shape functions from the class (7) satisfy the assumptions
of our main results. Moreover, as was kindly pointed out to us by Jim Gatheral, our Model with
volume impact reversion is equivalent to the Model with price impact reversion when we replace
ρt by ρ̃t := ρt

1+α
. Indeed, when the large trader is not active during the interval [t, t + s) volume

impact reversion implies that Et+s = e−
R t+s
t

ρu duEt. Hence,

Dt+s = F−1(Et+s) = e−
R t+s
t

eρu duF−1(Et) = e−
R t+s

t
eρu duDt,

and so D satisfies dDr = −ρ̃rDr dr in [t, t+ s). ♦

Example 2.4 (Negative power-law shape). Consider the shape functions of the form

f(x) =





q

(1 + λ+x)α+
for x > 0,

q

(1 − λ−x)α−

for x < 0,

where q and λ± are positive constants and α± ∈ (0, 1]. We will see later that these shape functions
satisfy the assumptions of our main results. ♦

2.2 The cost optimization problem

We assume that the large trader needs to liquidate a portfolio of X0 shares until time T and that
trading can occur at N+1 trades within the time interval [0, T ]. An admissible sequence of trading
times will be a sequence T = (τ0, . . . , τN ) of stopping times such that 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T .
For such an admissible sequence of trading times, T , we define a T -admissible trading strategy as
a sequence ξ = (ξ0, ξ1, . . . , ξN) of random variables such that

• X0 +
∑N

n=0 ξn = 0 (i.e., the strategy liquidates the given portfolio X0),

• each ξn is measurable with respect to Fτn,

• each ξn is bounded from below.

The quantity ξn corresponds to the size of the market order placed at time τn. Note that we do
not a priori require that all ξn have the same sign, i.e., we also allow for an alternation of buy
and sell orders. But we assume that there is some bound on the size of sell orders. Finally, an
admissible strategy is a pair (T , ξ) consisting of an admissible sequence of trading times T and a
T -admissible trading strategy ξ.

Let us now define the costs incurred by an admissible strategy (T , ξ). When at time τn a buy
market order of size ξn > 0 is placed, the trader will purchase f(x) dx shares at price S0

τn
+x, with

x ranging from Dτn to Dτn+. Hence, the total cost of the buy market order amounts to

πτn(ξ) :=

∫ Dτn+

Dτn

(S0
τn

+ x)f(x) dx = S0
τn
ξn +

∫ Dτn+

Dτn

xf(x) dx. (8)
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Similarly, for a sell market order ξn < 0, the trader will sell f(x) dx shares at price S0
τn

+ x, with
x ranging from Dτn+ to Dτn . Since the costs of sales should be negative, formula (8) is also valid
in the case of a sell order.

The average cost C(ξ, T ) of an admissible strategy (ξ, T ) is defined as the expected value of
the total costs incurred by the consecutive market orders:

C(ξ, T ) = E

[ N∑

n=0

πτn(ξ)
]
. (9)

The problem at hand is thus to minimize the average cost C(ξ, T ) over all admissible strategies
(ξ, T ). In doing this, we will assume for simplicity throughout this paper that the function F is
unbounded in the sense that

lim
x↑∞

F (x) = ∞ and lim
x↓−∞

F (x) = −∞. (10)

That is, we assume that the limit order book has infinite depth. Relaxing this assumption is
possible but would require additional constraints on the order sizes in admissible strategies and
thus complicate the problem description.

In our earlier paper with A. Fruth, [2], we considered the case of a constant resilience ρ and a
fixed, equidistant time spacing Teq = {iT/N | i = 0, . . . , N}. In this setting, we determined trading
strategies that minimize the cost C(ξ, Teq) among all Teq-admissible trading strategies ξ. Our goal
in this paper consists in simultaneously minimizing over trade times and sizes. Also, in our present
setting of an inhomogeneous resilience function ρt it is natural to replace the equidistant time
spacing by the homogeneous time spacing

T ∗ = (t∗0, . . . , t
∗
N)

defined via ∫ t∗i

t∗i−1

ρs ds =
1

N

∫ T

0

ρs ds, i = 1, . . . , N.

We also define
a∗ := e−

1

N

R T
0

ρudu. (11)

Our main result states that, under certain technical assumptions, T ∗ is in fact the unique optimal
time grid for portfolio liquidation with N + 1 trades in [0, T ]. In addition, the unique optimal
T ∗-admissible strategies for both model variants, i.e., for the reversion of price or volume impact,
are given by the corresponding trading strategies in [2].

As a corollary to our main results, we are able to show that our models do not admit price
manipulation strategies in the following sense, introduced by Huberman and Stanzl [14] (see also
Gatheral [12]).

Definition 2.5. A round trip is an admissible strategy (ξ, T ) for X0 = 0. A price manipulation
strategy is a round trip (ξ, T ) such that C(ξ, T ) < 0.

Our main results also imply that our models do not possess the following model irregularity,
which was introduced and discussed in our joint paper [3] with A. Slynko.
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Definition 2.6. A model admits transaction-triggered price manipulation if the expected execution
costs of a sell (buy) program can be decreased by intermediate buy (sell) trades. More precisely,
there is transaction-triggered price manipulation if there exists X0 ∈ R and a corresponding
admissible strategy (ξ, T ) such that

C(ξ, T ) < inf
{
C(ξ, T )

∣∣ (ξ, T ) is admissible and all trades in ξ have the same sign
}
. (12)

By taking X0 = 0 in Definition 2.6, one sees that standard price manipulation in the sense
of Definition 2.5 can be regarded as a special case of transaction-triggered price manipulation. It
follows that the absence of transaction-triggered price manipulation implies the absence of standard
price manipulation. It is possible, however, to construct models that admit transaction-triggered
price manipulation but not standard price manipulation. This happens, for instance, if we take
a constant shape function f ≡ q and replace exponential resilience by Gaussian decay of price
impact; see [3].

2.3 Main results for the block-shaped limit order book

We first discuss our problem in the particularly easy case of a block-shaped limit order book in
which f(x) = q. In that case, our two model variants with the respective reversion of price and
volume impact coincide. It follows from the results in [1] that for every admissible sequence of
trading times T = (τ0, . . . , τN) there is a T -admissible trading strategy that minimizes the cost
C(·, T ) among all T -admissible trading strategies. This strategy can even be computed explicitly;
see [1, Theorem 3.1]. In the following theorem we consider the problem of optimizing jointly over
trading times and sizes.

Theorem 2.7. In a block-shaped limit order book, there is a P-a.s. unique optimal strategy (ξ∗, T ∗)
consisting of homogeneous time spacing T ∗ and the deterministic trading strategy ξ∗ defined by

ξ∗0 = ξ∗N =
−X0

2 + (N − 1)(1 − a∗)
and ξ∗1 = · · · = ξ∗N−1 = ξ∗0(1 − a∗), (13)

where a∗ is as in (11).

While the preceding theorem is a special case of our main results, Theorem 2.11 and Theo-
rem 2.17, it admits a particularly easy proof based on the results in [1]. This proof is given in
Section 3.1.

Corollary 2.8. In a block-shaped limit order book, there is neither standard not transaction-
triggered price manipulation.

An obvious extension of our model is to allow the resilience rate ρt to be a progressively
measurable stochastic process. In this case, optimal strategies will look different. However, the
absence of price manipulation remains valid even for this case; see Remark 3.2 at the end of Section
3.1.

Figure 2 gives an illustration of the situation when ρ(t) = a + b cos(t/(2π)), 0 ≤ t ≤ T . For
a > b > 0 the resilience is greater near the opening and the closure of the stock exchange, and
T represents the trade duration in days. We plot here the relative gain, i.e., the quotient of the
respective expected costs, for the optimal strategies corresponding to the optimal time grid T ∗ and
the equidistant time grid Teq. More precisely, we plot the quotient of the respective cost functions
defined in equation (32) below.
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Figure 2: Relative gain between the extra liquidity cost of the optimal strategy on the optimal
grid T ∗ and the optimal strategy on the equidistant grid Teq as a function of N , when T = 1, 2
and 5 with the resilience function ρ(t) = 10 + 8 cos(t/2π).
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2.4 Main results for volume impact reversion

In this section we state our main results for the Model with volume impact reversion. They hold
under the following assumption. Its first part covers Examples 2.2 and 2.4. Its second part covers
the important case of power law price impact as introduced in Example 2.3.

Assumption 2.9. In the Model with volume impact reversion, we assume in addition to (10) that
the shape function f satisfies one of the following conditions (a) and (b).

(a) f is nondecreasing on R− and nonincreasing on R+.

(b) f(x) = λ|x|α, for constants λ, α > 0.

We start by looking at optimal trading strategies when an admissible sequence of trading times
T = (τ0, . . . , τN ) is fixed. If ξ is a T -admissible trading strategy and it happens that τi = τi+1,
then the corresponding trades, ξi and ξi+1, are executed simultaneously. We therefore say that two
T -admissible trading strategies ξ and ξ are equivalent if ξi + ξi+1 = ξi + ξi+1 P-a.s. on {τi = τi+1}.

Proposition 2.10. Suppose that an admissible sequence of trading times T is given and that
Assumption 2.9 holds. Then there exists a T -admissible trading strategy ξV,T , P-a.s. unique up to
equivalence, that minimizes the cost C(·, T ) among all T -admissible trading strategies. Moreover,
ξV,T 6= 0 for X0 6= 0 up to equivalence, and all components of ξV,T have the same sign. For X0 = 0,
all components of ξV,T are zero.

As we will see in the proof of Proposition 2.10, the optimal trading strategy ξV,T can be
implicitly characterized via a certain nonlinear equation. Our main result for the case of volume
impact reversion states, however, that things become much easier when optimizing simultaneously
over trading times and sizes:

Theorem 2.11. Under Assumption 2.9, for every X0 6= 0 there is a P-a.s. unique optimal strategy
(ξV , T ∗) consisting of homogeneous time spacing T ∗ and the deterministic trading strategy ξV that
is defined as follows. The initial market order ξV

0 is the unique solution of the equation

F−1
(
−X0 −NξV

0 (1 − a∗)
)

=
F−1(ξV

0 ) − a∗F−1(a∗ξV
0 )

1 − a∗
, (14)

the intermediate orders are given by

ξV
1 = · · · = ξV

N−1 = ξV
0 (1 − a∗) , (15)

and the final order is determined by

ξV
N = −X0 − ξV

0 − (N − 1)ξV
0 (1 − a∗) .

Moreover, ξV
0 6= 0 and all components of ξV have the same sign. That is, ξV consists only of

nontrivial sell orders for X0 > 0 and only of nontrivial buy orders for X0 < 0.

The preceding results imply the following corollary relating to Definitions 2.5 and 2.6.
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Corollary 2.12. Under Assumption 2.9, the Model with volume impact reversion admits neither
standard nor transaction-triggered price manipulation.

The absence of price manipulation stated in the preceding corollary remains valid even for the
case in which resilience ρt is stochastic; see Remark 3.2 at the end of Section 3.1.

Corollary 2.12 shows that, in our Model with volume reversion, exponential resilience of price
impact is well compatible with nonlinear impact governed by a shape function that satisfies As-
sumption 2.9. We thus deduce that, at least from a theoretical perspective, exponential resilience of
a limit order book is a viable possibility for describing the decay of market impact. This contrasts
Gatheral’s [12] observation that, in a related but different continuous-time model, exponential de-
cay of price impact gives rise to price manipulation in the sense of Definition 2.5 as soon as price
impact is nonlinear. Given the strong contrasts between the results in [12] and our Corollary 2.12,
it is interesting to discuss the relations between the model in [12] and our model.

Remark 2.13 (Relation to Gatheral’s model). In [12], a continuous-time model is introduced,
which is closely related to our model. Formulating a discrete-time variant within our setting leads
to the following definition for the actual price process:

SJG
t = S0

t +
∑

τn<t

h(ξn)ψ(t− τn). (16)

Here, h : R → R is the price impact function, and ψ : R+ → R+ is the decay kernel. The decay
kernel describes the time decay of price impact. If we take ψ(t) = e−ρt for a constant ρ > 0, (16)
takes the form

SJG
t = S0

t +
∑

τn<t

h(ξn)e−ρ(t−τn). (17)

It was shown in Section 4 of [12] that the continuous-time version of (17) admits price manipulation
in the sense of Definition 2.5 as soon as the function h is not linear. By approximating a continuous-
time price manipulation strategy with discrete-time strategies, one sees that this result carries over
to the discrete-time framework (17).

When taking a constant resilience speed ρ in our Model with volume impact reversion, the
volume impact process is of the form Et =

∑
τn<t ξne

−ρ(t−τn), and so our price process is given by

St = S0
t + F−1

(∑

τn<t

ξne
−ρ(t−τn)

)
. (18)

Thus, the difference between the two models is that in (17) the nonlinear price impact function is
applied to each individual trade, while in (18) the price impact is obtained as a nonlinear function
of the volume impact. Therefore, both models are different, and there is no contradiction between
the results in [12] and Corollary 2.12. ♦

Remark 2.14 (Continuous-time limit). Let us briefly discuss the asymptotic behavior of the
optimal strategy when the number N of trades tends to infinity. Since for any N we have that ξV

0

lies strictly between 0 and −X0, we can extract a subsequence that converges to some ξV,∞
0 . One

therefore checks that the right-hand side of (14) tends to

h∞V (ξV,∞
0 ) := F−1(ξV,∞

0 ) +
ξV,∞
0

f(F−1(ξV,∞
0 ))

.

11
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Since N(1 − a∗) →
∫ T

0
ρs ds, the left-hand side of (14) converges as well, and so ξV,∞

0 must be a
solution y of the equation

F−1
(
−X0 − y

∫ T

0

ρs ds
)

= h∞V (y).

Note that, under our assumptions, h∞V is strictly increasing. Hence, the preceding equation has a
unique solution, which consequently must be the limit of ξV

0 as N ↑ ∞. It follows moreover that

NξV
1 → ξV,∞

0

∫ T

0
ρs ds and that

ξV
N −→ −X0 − ξV,∞

0 − ξV
0

∫ T

0

ρs ds =: ξV,∞
T .

Thus, the optimal strategy, described in “resilience time” r(t) :=
∫ t

0
ρs ds, consists of an initial

block trade of size ξV,∞
0 , continuous buying at constant rate ξV,∞

0 during (0, T ), and a final block
trade of size ξV,∞

T . Transforming back to standard time leaves the initial and final block trades
unaffected, and continuous buying in (0, T ) now occurs at the time-dependent rate ρtξ

V,∞
0 .

One can expect that this limiting strategy could be optimal in the following continuous-time
variant of our model, which is similar to the setup in [13]. A strategy is a predictable processes
t 7→ Xt of bounded total variation, which describes the number of shares in the portfolio of the
trader at time t. Given such a strategy, the process E is defined via E0 = 0 and

dEt = dXt − ρtEt dt, (19)

and D is given by Dt = F (Et). The optimal strategy obtained above then corresponds to

dX∗
t = ξV,∞

0 δ0(dt) + ξV,∞
0 ρt dt+ ξV,∞

T δT (dt). ♦

2.5 Main results for reversion of price impact

In this section we state our main results for the Model with reversion of price impact. This case
is analytically more complicated than the Model with volume impact, because the quantity that
decays exponentially is no longer a linear function of the order size. We therefore need a stronger
assumption:

Assumption 2.15. In addition to (10) we assume that the shape function f satisfies one of the
following conditions (a) and (b).

(a) f is twice differentiable on R\{0}, nondecreasing on R− and nonincreasing on R+, and satisfies

x 7→ xf ′(x)/f(x) is nondecreasing on R−, nonincreasing on R+, and (−1, 0]-valued, (20)

1 + x
f ′(x)

f(x)
+ 2x2

(
f ′(x)

f(x)

)2

− x2 f
′′(x)

f(x)
≥ 0 for all x ≥ 0. (21)

(b) f(x) = λ|x|α, for constants λ, α > 0.

We will see in Example 2.19 below that Assumption 2.15 (a) is satisfied for the power law shape
functions from Example 2.4. Also, we know already from Example 2.3 that under Assumption 2.15
(b) that the Model with reversion of price impact is equivalent to a model with reversion of volume
impact.

12
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We start by looking at optimal trading strategies when an admissible sequence of trading times
T = (τ0, . . . , τN) is fixed. As in Section 2.4, we say that two T -admissible trading strategies ξ and
ξ are equivalent if ξi + ξi+1 = ξi + ξi+1 P-a.s. on {τi = τi+1}.

Proposition 2.16. Suppose that an admissible sequence of trading times T is given and that
Assumption 2.15 holds. Then there exists a T -admissible trading strategy ξP,T , P-a.s. unique up
to equivalence, that minimizes the cost C(·, T ). Moreover, ξP,T 6= 0 for X0 6= 0 up to equivalence,
and all components of ξP,T have the same sign. For X0 = 0, all components of ξP,T are zero.

As in Proposition 2.10, computing the optimal trading strategy ξP,T for an arbitrary sequence
T can be quite complicated. But again the structure becomes much easier when optimizing also
over the sequence of trading times T . To state the corresponding result, let us recall from (11) the
definition of a∗ and let us introduce the function

hP,a∗(x) := x
f(x/a∗)/a∗ − a∗f(x)

f(x/a∗) − a∗f(x)
.

We will see in Lemma 3.8 (a) below that hP,a∗(x) is indeed well-defined for all x ∈ R as soon as
Assumption 2.15 is satisfied.

Theorem 2.17. Suppose that that the shape function f satisfies Assumption 2.15. Then for
X0 6= 0 there is a P-a.s. unique optimal strategy (ξP , T ∗), consisting of homogeneous time spacing
T ∗ and the deterministic trading strategy ξP that is defined as follows. The initial market order
ξP
0 is the unique solution of the equation

F−1
(
−X0 −N

[
ξP
0 − F

(
a∗F−1(ξP

0 )
)])

= hP,a∗

(
F−1(ξP

0 )
)
, (22)

the intermediate orders are given by

ξP
1 = · · · = ξP

N−1 = ξP
0 − F

(
a∗F−1(ξP

0 )
)
, (23)

and the final order is determined by

ξP
N = −X0 −NξP

0 + (N − 1)F
(
a∗F−1(ξP

0 )
)
.

Moreover, ξP
0 6= 0 and all components of ξP have the same sign. That is, ξP consists only of

nontrivial sell orders for X0 > 0 and only of nontrivial buy orders for X0 < 0.

Again, the preceding results lead to the following corollary. Its conclusion on the absence of
price manipulation remains valid even for the case in which resilience ρt is stochastic; see Remark
3.2 at the end of Section 3.1.

Corollary 2.18. Under Assumption 2.15, the Model with price impact reversion admits neither
standard nor transaction-triggered price manipulation.

We continue this section by showing that the power law shape functions from Example 2.4
satisfy Assumption 2.15 (a).

13
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Example 2.19 (Negative power-law shape). Let us show that the power-law shape functions from
Example 2.4 satisfy our Assumption 2.15 (a). For checking (20) and (21) we concentrate on the
branch of f on the positive part of the real line. So let us suppose that

f(x) =
q

(1 + λx)α
, for x > 0,

with α ∈ [0, 1], q, λ > 0. We have xf ′(x)/f(x) = − αλx
1+λx

∈ (−1, 0] which is nonincreasing on R+.
Moreover, for x ≥ 0 we have

1 + x
f ′(x)

f(x)
+ 2x2

(
f ′(x)

f(x)

)2

− x2 f
′′(x)

f(x)
=

1 + (2 − α)λx+ (1 − 2α + α2)(λx)2

(1 + λx)2
≥ 0. ♦

Remark 2.20. With a positive power-law shape, we know from Example 2.3 that the model with
volume impact reversion ρt is equivalent to the model with price impact reversion ρ̃t = ρt/(1 +α).
Thus, the strategy defined via (14) and (15) with a∗ is the same as the one defined by (22) and (23)

with ã∗ = (a∗)
1

1+α . This can be checked by a straightforward calculation. ♦

Remark 2.21. As in Remark 2.14, we can study the asymptotic behavior of the optimal strategy
as the number N of trades tends to infinity. First, one checks that hP,a∗ converges to

h∞P (x) := x
(
1 +

f(x)

f(x) + xf ′(x)

)
,

and that N(y−F (a∗F−1(y))) tends to F−1(y)f(F−1(y))
∫ T

0
ρs ds. Now, suppose that the equation

F−1
(
−X0 − F−1(y)f(F−1(y))

∫ T

0

ρs ds
)

= h∞P (F−1(y))

has a unique solution that lies strictly between 0 and −X0, and which we will call ξP,∞
0 . We

then see as in Remark 2.14 that ξP,∞
0 is the limit of ξP

0 when N ↑ ∞. Next, NξP
1 converges to

F−1(ξP,∞
0 )f(F−1(ξP,∞

0 ))
∫ T

0
ρs ds and ξP

N to

ξP,∞
T := −X0 − ξP,∞

0 − F−1(ξP,∞
0 )f(F−1(ξP,∞

0 ))

∫ T

0

ρs ds.

This yields a description of the continuous-time limit in “resilience time” r(t) :=
∫ t

0
ρs ds. Using

a time change as in Remark 2.14, we obtain that the optimal strategy consists of an initial block
order of ξP,∞

0 shares at time 0, continuous buying at rate ρtF
−1(ξP,∞

0 )f(F−1(ξP,∞
0 )) during (0, T ),

and a final block order of ξP,∞
T shares at time T . One might guess that this strategy should be

optimal in the continuous-time model in which strategies are predictable processes t 7→ Xt of total
bounded variation and the volume impact process satisfies

dEt = dXt − ρtg(Et) dt

for g(x) = f(F−1(x))F−1(x); see also Remark 2.14. ♦
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2.6 Two-sided limit order book models

We now explain how our results can be used to analyze models for an electronic limit order book
with a nonvanishing and dynamic bid-ask spread. To this end, we focus on a buy program with
X0 < 0 (the case of a sell program is analogous). Therefore emphasis is on buy orders, and we
concentrate first on the upper part of the limit order book, which consists of shares offered at
various ask prices. The lowest ask price at which shares are offered is called the best ask price.
When the large trader is inactive, the dynamics of the limit order book are determined by the
actions of noise traders only. We assume that the corresponding unaffected best ask price A0

is a rightcontinuous martingale on a given filtered probability space (Ω, (Ft),F ,P) and satisfies
A0

0 = A0 P-a.s. for some constant A0. Above the unaffected best ask price A0
t , we assume a

continuous distribution for ask limit orders: the number of shares offered at price A0
t + x with

x ≥ 0 is given by f(x) dx, where f is a given shape function.
The actual best ask price at time t, i.e., the best ask price after taking the price impact of

previous buy orders of the large trader into account, is denoted by At. It lies above the unaffected
best ask price, and the price impact on ask prices caused by the actions of the large trader is
denoted by

DA
t := At − A0

t .

A buy market order of ξt > 0 shares placed by the large trader at time t will consume all the ask
limit orders offered at prices between At and At+ := A0

t + DA
t+, where DA

t+ is determined by the

condition
∫ DA

t+

DA
t

f(x)dx = ξt. Thus, the process DA captures only the impact of market buy orders

on the current best ask price. We also define the volume impact on ask orders by EA
t := F (DA

t ),
where again F (x) =

∫ x

0
f(y) dy.

On the bid side of the limit order book, we have an unaffected best bid process, B0
t . All we

assume on its dynamics is B0
t ≤ A0

t at all times t. The distribution of bids below B0
t is modeled

by the restriction of the shape function f to the domain (−∞, 0). In analogy to the ask part,
we introduce the the price impact on bid prices by DB

t := Bt − B0
t . The process DB will be

nonpositive. A sell market order of ξt < 0 shares placed at time t will consume all the shares
offered at prices between Bt and Bt+ := B0

t +DB
t+, where DB

t+ is determined by the condition

ξt = F (DB
t+) − F (DB

t ) =: EB
t+ − EB

t ,

for EB
s := F (DB

s ). As before, there are now two distinct variants for modeling the reversion of the
volume and price impact processes while the trader is not active. More precisely, we assume that

dEA
t = −ρtE

A
t dt and dEB

t = −ρtE
B
t dt for reversion of volume impact

dDA
t = −ρtD

A
t dt and dDB

t = −ρtD
B
t dt for reversion of price impact.

(24)

The respective model variants will be called the two-sided limit order book models with reversion
of volume or price impact.

Finally, we define the costs of an admissible strategy (T , ξ). We can argue as in Section 2.2
that the costs incurred at time τn should be defined as

πτn(ξ) =






∫ DA
τn+

DA
τn

f(x) dx for ξn > 0,

0 for ξn = 0,
∫ DB

τn+

DB
τn

f(x) dx for ξn < 0.

(25)
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The following result compares the costs in the two-sided model to the costs πτn(ξ) defined in (8).

Proposition 2.22. Suppose that A0 = S0. Then, for any strategy ξ, we have πτn(ξ) ≥ πτn(ξ) for
all n, with equality if all trades in ξ are nonnegative.

The preceding result can be proved by arguments given in [2, Section A]. Together with the
observation that there is no transaction-triggered price manipulation in the models introduced in
Section 2.1, it provides the key to transferring results on the basic model to the order book model.
We thus have the following corollary.

Corollary 2.23. Suppose that A0 = S0.

(a) Under Assumption 2.9, the strategy (ξV , T ∗) defined in Theorem 2.11 is the unique optimal
strategy in the two-sided limit order book model with volume impact reversion.

(b) Under Assumption 2.15, the strategy (ξP , T ∗) defined in Theorem 2.17 is the unique optimal
strategy in the two-sided limit order book model with price impact reversion.

3 Proofs

In a first step, note that the average costs introduced in (9) are of the form

C(ξ, T ) = E

[ N∑

n=0

πτn(ξ)
]

= E

[ N∑

n=0

ξnS
0
τn

]
+ E

[ N∑

n=0

∫ Dτn+

Dτn

xf(x) dx
]
.

Due to the martingale property of S0, optional stopping, and the fact that
∑N

n=0 ξn = −X0,
the first expectation on the right is equal to −X0S0. Next, note that the process D evolves
deterministically once the values of τ0(ω), . . . , τN (ω) and ξ0(ω), . . . , ξN(ω) are given. Thus, when

the functional
∑N

n=0

∫ Dτn+

Dτn
xf(x) dx admits a unique deterministic minimizer, this minimizer must

be equal to the unique optimal strategy.
To formulate the resulting deterministic optimization problem, it will be convenient to work

with the quantities

αk :=

∫ τk

τk−1

ρsds, k = 1, . . . , N, (26)

instead of the τk themselves. The condition 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T is clearly equivalent to
α := (α1, . . . , αN) belonging to

A :=
{

α := (α1, . . . , αN) ∈ R
N
+

∣∣∣
N∑

k=1

αk =

∫ T

0

ρs ds
}
.

By abuse of notation, we will write

En and Dn instead of Eτn and Dτn (27)

as long as there is no possible confusion. We will also write

En+ = En + ξn and Dn+ = Dn + ξn instead of Eτn+ and Dτn+. (28)
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Then

Ek+1 = e−αk+1Ek+ = e−αk+1(Ek + ξk) for volume impact reversion,

Dk+1 = e−αk+1Dk+ = e−αk+1F−1 (ξk + F (Dk)) for price impact reversion.
(29)

With this notation, it follows that there exist two deterministic functions CV , CP : R
N+1×A →

R such that

N∑

n=0

∫ Dn+

Dn

xf(x) dx =

{
CV (ξ,α) in the Model with volume impact reversion,

CP (ξ,α) in the Model with price impact reversion.
(30)

We will show in the respective Sections 3.2 and 3.3 that, under our assumptions, the functions CV

and CP have unique minima within the set Ξ ×A, where

Ξ :=
{
x = (x0, . . . , xN) ∈ R

N+1
∣∣X0 +

N∑

n=0

xn = 0
}
.

When working with deterministic trading strategies in Ξ rather than with random variables, we
will mainly use Roman letters like x instead of Greek letters such as ξ. Last, we introduce the
functions

F̃ (x) :=

∫ x

0

zf(z) dz and G = F̃ ◦ F−1. (31)

We conclude this section with the following easy lemma.

Lemma 3.1. For X0 < 0, there is no x ∈ Ξ such that En+ = En + xn ≤ 0 (or, equivalently,
Dn+ ≤ 0) for all n = 0, . . . , N .

Proof: Since the effect of resilience is to drive the extra spread back to zero, we have En+ ≥
x0+· · ·+xn up to and including the first n at which x0+· · ·+xn > 0. Since x0+· · ·+xN = −X0 > 0,
the result follows.

3.1 Proofs for a block-shaped limit order book

In this section, we give quick and direct proofs for our results in case of a block-shaped limit
order book with f(x) = q. In this setting, our two model variants coincide; see Example 2.2. As
explained in [1], the cost function in (30) is an increasing affine function of

C(x,α) =
1

2
〈x,M(α)x〉, x ∈ Ξ, α ∈ A, (32)

where 〈·, ·〉 is the usual Euclidean inner product and M(α) is the positive definite symmetric
matrix with entries

M(α)n,m = exp
(
−

∫ τn∨m

τn∧m

ρudu
)

= exp
(
−
∣∣∣

n∑

i=1

αi −
m∑

j=1

αj

∣∣∣
)
, 0 ≤ n,m ≤ N.

Proof of Theorem 2.7. For α belonging to

A∗ :=
{
α ∈ A |αi > 0, i = 1, . . . , N

}
,
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the inverse M(α)−1 of the matrix M(α) can be computed explicitly, and the unique optimal
trading strategy for fixed α is

x∗(α) =
−X0

〈1,M(α)−11〉
M(α)−11.

By [1, Theorem 3.1] the vector M(α)−11 has only strictly positive components for α ∈ A∗. It
follows that

min
x∈Ξ

C(x,α) = C(x∗(α),α) =
X2

0

2〈1,M(α)−11〉

=
X2

0

2

(
2

1 + e−α1
+

N∑

n=2

1 − e−αn

1 + e−αn

)−1

(33)

=
X2

0

2

(
N∑

n=1

2

1 + e−αn
− (N − 1)

)−1

.

Minimizing minx∈Ξ C(x,α) over α ∈ A∗ is thus equivalent to maximizing
∑N

n=1
2

1+e−αn
. The

function a 7→ 2
1+e−a is strictly concave in a > 0. Hence,

N∑

n=1

2

1 + e−αn
≤

2N

1 + e−
1

N

PN
n=1 αn

=
2N

1 + e−
1

N

R T

0
ρudu

,

with equality if and only if α = α∗, where α∗ corresponds to to homogeneous time spacing T ∗,
i.e.,

α∗
i =

1

N

∫ T

0

ρs ds, i = 1, . . . , N. (34)

Next, C(x,α) is clearly jointly continuous in x ∈ Ξ and α ∈ A, so infx∈Ξ C(x,α) is upper
semicontinuous in α. One thus sees that the minimum cannot be attained at the boundary of A.
Finally, the formula (13) for the optimal trading strategy with homogeneous time spacing can be
found in [1, Remark 3.2] or in [2, Corollary 6.1].

Proof of Corollary 2.8. The result follows immediately from Theorem 2.7.

Remark 3.2 (Stochastic resilience). Suppose that the resilience rate ρt is not necessarily deter-
ministic but can also be progressively measurable stochastic process. We assume moreover that ρt

is strictly positive and integrable. Then the expected costs of any admissible strategy (T , ξ) will
still be of the form

C(ξ, T ) = E[C(ξ,α) ].

Since C(ξ,α) ≥ 0 for every round trip by Corollary 2.8, the same is true for C(ξ, T ), and hence
there cannot be price manipulation for any round trip, even under stochastic resilience. The same
argument also applies in the contexts of Sections 2.4 and 2.5. ♦

3.2 Proofs for reversion of volume impact

We need a few lemmas before we can prove our main results for reversion of volume impact. For
simplicity, we will first prove our results for X0 < 0. The case for X0 > 0 will then follow by the
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symmetry of the problem formulation. The case of round trips with X0 = 0 will be analyzed by a
limiting procedure in the proof of Proposition 2.10.

The subsequent Lemma 3.3 formulates analytic properties implied by our Assumption 2.9. In
fact, only these properties will be needed in the remainder of the proof, and so our results remain
valid for all shape functions f that satisfy the conclusions of Lemma 3.3. The next step in our
proof is to prove existence and uniqueness of optimal strategies. This is done in Lemma 3.6 by
exploiting the fact that, in the Model with volume impact reversion, the cost functional is coercive
and strictly convex. Note, however, that convexity will be lost in the Model with price impact
reversion. The final and most delicate step of the proof is to show that the first-order condition
for optimality yields a nonlinear equation that uniquely determines the optimal strategy. The
recursive formula of Lemma 3.4 is a preliminary step into that direction.

Lemma 3.3. Under Assumption 2.9, the following conclusions hold.

(a) For each a ∈ (0, 1), the function hV,a(y) = F−1(y) − aF−1(ay) is strictly increasing on R.

(b) For all a, b ∈ (0, 1) and ν > 0, we have the inequalities:

h−1
V,a

(
ν(1 − a)

)
> b · h−1

V,b

(
ν(1 − b)

)
, (35)

b · h−1
V,b

(
ν(1 − b)

)
< F (ν). (36)

(c) The function HV : (y, a) ∈ (0,∞) × (0, 1) 7→
(

F−1(y)−aF−1(ay)
1−a

, ay F−1(y)−F−1(ay)
1−a

)
∈ R

2 is

one-to-one.

Proof of Lemma 3.3 under Assumption 2.9 (a): Assumption 2.9 (a) states that f is increasing
on R− and decreasing on R+. Part (a) of the assertion thus follows from [2, Remark 2].

For the proof of part (b), let y := h−1
V,a

(
ν(1− a)

)
. Then y > 0 since hV,a(0) = 0. Note also that

F−1 is convex on R+. Let f̂ be its derivative. Then,

ν =
F−1(y) − aF−1(ay)

1 − a
= F−1(ay) +

F−1(y) − F−1(ay)

1 − a

= F−1(ay) +
1

1 − a

∫ y

ay

f̂(x) dx < F−1(y) + yf̂(y) =: g(y).

Clearly, g is a strictly increasing function on R+, and so we have y > g−1(ν).
Next, let z := b · h−1

V,b

(
ν(1 − b)

)
. Then,

ν =
F−1(z/b) − bF−1(z)

1 − b
= F−1(z) +

F−1(z/b) − F−1(z)

1 − b

= F−1(z) +
1

1 − b

∫ z/b

z

f̂(x) dx ≥ F−1(z) + zf̂(z) = g(z),

since f̂(z) = 1/f(F−1(z)) is nondecreasing for z > 0. Thus, z ≤ g−1(ν) < h−1
V,a

(
ν(1− a)

)
, and (35)

follows. For (36) it now suffices to note that g(z) > F−1(z).
To prove part (c), let a1, a2 ∈ (0, 1) and y1, y2 > 0 and assume that HV (a1, y1) = HV (a2, y2).

Since
F−1(y) − aF−1(ay)

1 − a
= F−1(y) + a

F−1(y) − F−1(ay)

1 − a
,
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we get

F−1(y1) + a1
F−1(y1) − F−1(a1y1)

1 − a1
= F−1(y2) + a2

F−1(y2) − F−1(a2y2)

1 − a2
,

a1y1
F−1(y1) − F−1(a1y1)

1 − a1
= a2y2

F−1(y2) − F−1(a2y2)

1 − a2
. (37)

Assume that y1 6= y2, say, y1 > y2 > 0. Multiplying the first identity by y1 and subtracting the
second identity yields

y1
F−1(y1) − F−1(y2)

y1 − y2

=
a2

1 − a2

[
F−1(y2) − F−1(a2y2)

]
. (38)

Since (F−1)′(y) = f̂(y) is nondecreasing for y > 0, we obtain that

y1
F−1(y1) − F−1(y2)

y1 − y2
≥ y1f̂(y2) and

a2

1 − a2

[
F−1(y2) − F−1(a2y2)

]
≤ a2y2f̂(y2),

which contradicts the previous equation since y1 > y2 ≥ a2y2. Therefore we must have y1 = y2.
It is therefore sufficient to show that

h̃(a) :=
a

1 − a

[
F−1(y) − F−1(ay)

]
, a ∈]0, 1[,

is one-to-one for any y > 0. Its derivative is equal to

h̃′(a) =
1

(1 − a)2

[
F−1(y) − F−1(ay)

]
−

ay

1 − a
f̂(ay). (39)

Using again that f̂(y) is nondecreasing for y > 0, we get

F−1(y) − F−1(ay) > (1 − a)yf̂(ay)

and in turn h̃′(a) > 0.

Proof of Lemma 3.3 under Assumption 2.9 (b): Assumption 2.9 (b) states that f(x) = λ|x|α

for constants λ, α > 0. Thus,

hV,a(y) =
(1 + α

λ

) 1

1+α (
1 − a

2+α
1+α

)
|y|

1

1+α sign y, (40)

and so part (a) of the assertion follows.
As for part (b) of the assertion, note that

h−1
V,a

(
ν(1 − a)

)
=

λ

1 + α
ν1+α

(
1 − a

1 − a
2+α
1+α

)1+α

Hence, when a goes from 0 to 1, the value of h−1
V,a(ν(1−a)) decreases from λ

1+α
ν1+α to λ

1+α
ν1+α

(
1+α
2+α

)1+α
.

Using the shorthand notation γ := 1 + α, the inequality (35) will thus follow if we can show that

b
1

γ
1 − b

1 − b
1+γ

γ

<
γ

1 + γ
(41)
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for 0 < b < 1 and γ > 1. The preceding inequality is equivalent to

1 − b <
γ

1 + γ
(b−1/γ − b).

But the function on the right is a strictly convex decreasing function of b, whose derivative at b = 1
is −1. This proves the asserted inequalities and in turn (35). Inequality (36) is obvious, given our
formulas for h−1

V,b

(
ν(1 − b)

)
and F .

To prove (c), we use the same argument as under Assumption 2.9 (a). First, let us observe that
Ψ : x ∈ R+ 7→ x(x1/(1+α) − 1)/(x− 1) is increasing, which can be easily checked by derivating. If
y1 6= y2, say, z = y1/y2 > 1, we get Ψ(z) = Ψ(a2) from (38) which is not possible since z > 1 > a2.
Thus y1 = y2, and we get from (37) that Ψ(a1) = Ψ(a2), which gives a1 = a2.

Let us turn to the calculation of the cost derivatives. With (31), the cost function (30) in the
Model with volume impact reversion can be represented as

CV (x,α) =
N∑

n=0

[
G(En + xn) −G(En)

]
, x ∈ Ξ, α ∈ A, (42)

where

E0 = 0 and En =
n−1∑

i=0

xie
−

Pn
k=i+1

αk , 1 ≤ n ≤ N.

Lemma 3.4. For i = 0, . . . , N − 1, we have the following recursive formula,

∂CV

∂xi
= F−1(Ei + xi) − e−αi+1F−1(Ei+1) + e−αi+1

∂CV

∂xi+1
. (43)

Moreover, for i = 1, . . . , N ,

∂CV

∂αi

= Ei

N∑

n=i

[
F−1(En + xn) − F−1(En)

]
e−

Pn
k=i+1

αk . (44)

Proof: To prove (43), we first need to calculate ∂En/∂xi. We obtain:

∂En

∂xi
= 0 if i ≥ n, and

∂En

∂xi
= e−

Pn
k=i+1 αk if i < n.

Using the fact that G′ = F−1, we therefore get

∂CV

∂xi
= F−1(Ei + xi) +

N∑

n=i+1

[
F−1(En + xn) − F−1(En)

]
e−

Pn
k=i+1

αk

= F−1(Ei + xi) − e−αi+1F−1(Ei+1)

+e−αi+1

(
F−1(Ei+1 + xi+1) +

N∑

n=i+2

[
F−1(En + xn) − F−1(En)

]
e−

Pn
k=i+2

αk

)
,

which yields (43).
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For the proof of (44), we have first to compute ∂En/∂αi. We obtain:

∂En

∂αi
= 0 if i > n, and

∂En

∂αi
= −

i−1∑

m=0

xme
−

Pn
k=m+1

αk for i ≤ n.

From here, we get

∂CV

∂αi

= −
N∑

n=i

[
F−1(En + xn) − F−1(En)

] i−1∑

m=0

xme
−

Pn
k=m+1

αk

= Ei

N∑

n=i

[
F−1(En + xn) − F−1(En)

]
e−

Pn
k=i+1 αk ,

which is (44).

Remark 3.5. A consequence of this lemma is that homogeneous time spacing α∗ and the optimal
strategy ξV given in [2] yield a critical point for the minimization in (x,α). Indeed, we have then

Ei = a∗ξV
0 for any i, and therefore ∂CV

∂αi
does not depend on i. ♦

Lemma 3.6. For each α ∈ A the function CV (·,α) has a minimizer x∗(α) ∈ Ξ, which is unique
up to equivalence.

Proof: First note that we may assume without loss of generality that α ∈ A∗ = {α ∈ A |αi >
0, i = 1, . . . , N}. Indeed, if αi = 0 we can merge the trades xi−1 and xi into a single one and
reduce N to N − 1.

We next extend the arguments in [2, Lemma B.1] to prove the existence of a unique minimizer
of CV (·,α) in Ξ.

Using the convention
∑n

k=n+1 αk := 0, we obtain by rearranging the sum in (42) that

CV (x,α) = G
( N∑

i=0

xie
−

PN
k=i+1

αk

)
−G(0)

+
N−1∑

n=0

[
G
( n∑

i=0

xie
−

Pn
k=i+1

αk

)
−G

(
e−αn+1

n∑

i=0

xie
−

Pn
k=i+1

αk

)]
.

Let us define the linear map T : R
N+1 → R

N+1 via

(Tx)n =

n∑

i=0

xie
−

Pn
k=i+1

αk , n = 0, . . . , N.

We can thus write

CV (x,α) = G
(
(Tx)N

)
−G(0) +

N−1∑

n=0

[
G
(
(Tx)n

)
−G

(
e−αn+1(Tx)n

)]
. (45)
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Note first that G is strictly convex since G′ = F−1 is strictly increasing. Second, for a ∈ (0, 1), the
function x → G(x) − G(ax) is also strictly convex, because its derivative is equal to the strictly
increasing function hV,a in Lemma 3.3. And third, T is one-to-one. Hence, CV (·,α) is strictly
convex in is first argument, and there can be at most one minimizer.

To show the existence of a minimizer, note that G′ = F−1 is increasing with F−1(0) = 0, and
hence G(y) −G(ay) ≥ (1 − a)|y| · |F−1(ay)|. Therefore, (45) yields

CV (x,α) ≥ G
(
(Tx)N

)
−G(0)

+
N−1∑

n=0

(1 − e−αn+1) ·
∣∣F−1

(
e−αn+1(Tx)n

)∣∣ ·
∣∣∣(Tx)n

∣∣.

Hence,
CV (x,α) ≥ Λ

(
|Tx|∞

)
−G(0),

where | · |∞ is the ℓ∞-norm on R
N+1 and Λ is the function

Λ(y) := G(y) ∧G(−y) ∧ min
n=0,...,N−1

{
|y| · (1 − an+1)

(∣∣F−1(an+1 · y)
∣∣ ∧
∣∣F−1(−an+1 · y)

∣∣
)}
,

where an+1 := e−αn+1 . Since F is unbounded, both G(y) and |F−1(y)| tend to +∞ for |y| → ∞,
and the fact that T is one-to-one implies that Λ

(
|Tx|∞

)
→ +∞ for |x| → ∞. Note also that by

assumption αn > 0 for each n. Hence, CV (·,α) must attain its minimum on Ξ.

We are now in a position to prove the main results for the Model with reversion of volume
impact.

Proof of Proposition 2.10: The result for X0 < 0 will follow if we can show that the minimizer
in Lemma 3.6 consists only of strictly positive components. Here, we may assume without loss of
generality that the admissible sequence of trading times is strictly increasing, or equivalently that
α ∈ A∗, for otherwise we can simply merge two trades occurring at the same time into a single
trade.

If x is the minimizer of CV (·,α) on Ξ, then there must be a Lagrange multiplier ν such that
x is a critical point of y 7→ CV (y,α) − ν

∑N
i=0 yi. Hence, (43) yields that

ν(1 − ai+1) = F−1(Ei + xi) − ai+1F
−1(Ei+1) = hV,ai+1

(Ei + xi), i = 0, . . . , N − 1, (46)

where ai+1 = e−αi+1 and hV,a is as in Lemma 3.3. For the final trade, we have

ν = F−1(EN + xN ). (47)

Since hV,a(0) = 0 = F−1(0) and both hV,a and F−1 are strictly increasing, we conclude that
E0 + x0, . . . , EN + xN have all the same sign as ν. Thus, ν > 0 by Lemma 3.1. Next, (46) implies
that Ei +xi = h−1

V,ai+1
(ν(1−ai+1)) and hence Ei+1 = ai+1h

−1
V,ai+1

(ν(1−ai+1)). Using (46) once again
yields

x0 = h−1
V,a1

(ν(1 − a1)) and xi = h−1
V,ai+1

(ν(1 − ai+1)) − aih
−1
V,ai

(ν(1 − ai)), i = 1, . . . , N − 1.

The inequality (35) thus gives xi > 0 for i = 0, . . . , N − 1. As for the final trade, (47) gives
xN = F (ν) − aNh

−1
V,aN

(ν(1 − aN )), which is strictly positive by (36).
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Now we consider the case X0 = 0. Suppose that (x,α) is a round trip such that CV (x,α) ≤ 0.
Again we can assume w.l.o.g. that α ∈ A∗. Then

CV (x,α) = lim
ε↓0

CV (x + ε1,α).

But CV (x+ε1,α) > 0 for each ε > 0, due to our previous results. Hence we must have CV (x,α) =
0. The strict convexity of CV (·,α), established in the proof of Lemma 3.6, implies that there can be
at most one minimizer of CV (·,α) in the class of round trips. Since we clearly have CV (0,α) = 0,
we must conclude that x = 0.

Proof of Theorem 2.11: We will show that for X0 < 0 the admissible strategy (ξV ,α∗), defined
via (14), (15), and (34), is the unique minimizer of CV on Ξ × A. The first step is to show
the existence of a minimizer. To this end, note that Proposition 2.10 allows us to restrict the
minimization of CV to Ξ+ ×A, where Ξ+ = {x ∈ Ξ | xi ≥ 0, i = 0, . . . , N}. The set Ξ+ ×A is in
fact the product of two compact simplices, and so the continuity of CV yields the existence of a
global minimizer, which lies in Ξ+ ×A.

We next argue that any minimizer must belong to the relative interior of Ξ+ × A. To this
end, suppose that x ∈ Ξ+ and α ∈ A are given and such that αi = 0 for some i. We then define
α := (α0, . . . , αi−1, αi+1/2, αi+1/2, αi+2, . . . , αN) and x := (x0, . . . , xi−2, xi−1 + xi, 0, xi+1, . . . , xN )
and observe that CV (x,α) = CV (x,α). But Proposition 2.10 implies that x cannot be optimal for
α since xi = 0. In particular, (x,α) cannot be optimal. Thus, the α-component of any minimizer
must lie in the relative interior of A. Finally, for α in the relative interior of A, Proposition 2.10
states that x∗(α) belongs to the relative interior of Ξ+.

Now suppose that (x,α) is a minimizer of CV . Due to the preceding step, there must be
Lagrange multipliers ν and λ such that (x,α) is a critical point of (y,β) 7→ CV (y,β)−ν

∑N
i=0 yi−

λ
∑N

j=1 βj . The identity (43) thus again yields

ν(1 − e−αi+1) = F−1(Ei + xi) − e−αi+1F−1(Ei+1), i = 0, . . . , N − 1, (48)

and
ν = F−1(EN + xN ). (49)

Using the same argument as in the proof of Proposition 2.10, we have ν > 0. Note that this can
also be obtained by writing

−X0 =

N∑

i=0

xi = F (ν) +

N∑

i=1

(1 − ai)h
−1
1,ai

(ν(1 − ai)).

Indeed, the right-hand side is strictly increasing in ν (F and the functions h−1
1,ai

are strictly increas-
ing) and vanishes for ν = 0, so ν > 0.

Next, (44) gives

λ = Ej

N∑

n=j

[
F−1(En + xn) − F−1(En)

]
e−

Pn
k=j+1

αk , j = 1, . . . , N. (50)
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We now rewrite the sum in (50) as follows:

N∑

n=j

[
F−1(En + xn) − F−1(En)

]
e−

Pn
k=j+1

αk

= −F−1(Ej)

+
[
F−1(Ej + xj) − F−1(Ej+1)e

−αj+1
]
+ . . .

+
[
F−1(EN−1 + xN−1) − F−1(EN)e−αN

]
e−

PN−1

k=j+1
αk

+F−1(EN + xN)e−
PN

k=j+1 αk .

Plugging in (48) and (49), simplifications occur and we get

N∑

n=j

[
F−1(En + xn) − F−1(En)

]
e−

Pn
k=j+1

αk = ν − F−1(Ej).

Plugging this back into (50) yields λ = (ν − F−1(Ej))Ej for j = 1, . . . , N . Solving this equation
together with (48) for ν and λ implies that necessarily

ν =
F−1(Ei−1 + xi−1) − e−αiF−1(e−αi(Ei−1 + xi−1))

1 − e−αi
,

λ = e−αi(Ei−1 + xi−1)
F−1(Ei−1 + xi−1) − F−1(e−αi(Ei−1 + xi−1))

1 − e−αi
,

for i = 1, . . . , N . Lemma 3.3 (c) thus implies that

α1 = · · · = αN and x0 = E1 + x1 = · · · = EN−1 + xN−1.

This gives α = α∗. Moreover, (15) holds since xi = (1 − a∗)x0 for i = 1, . . . , N − 1. We also get
Ei = a∗x0 for i = 1, . . . , N . Note next that xN = −X0 − x0 − (N − 1)(1 − a∗)x0 and therefore
EN + xN = −X0 −N(1 − a∗)x0. Equation (14) now follows from the fact that

F−1(−X0 −N(1 − a∗)) = F−1(EN + xN ) =
∂CV

∂xN

(x,α) = ν =
F−1(x0) − a∗F−1(a∗x0)

1 − a∗
.

This concludes the proof of the theorem.

Proof of Corollary 2.12: The result follows immediately from Theorem 2.11.

3.3 Proofs for reversion of price impact

The general strategy of the proof is similar to the one Section 3.2, although there are also some
differences. We start with two lemmas on properties of the functions satisfying Assumption 2.15.
Their conclusions are more important than Assumption 2.15 itself, as the validity of the conclusions
of Lemmas 3.7 and 3.8 will imply the validity of Theorem 2.17.

Lemma 3.9 provides recursive identities for the gradient of our cost functional. These identities
are needed to derive equations for critical points of the constraint optimization problem. The
existence of such critical points is guaranteed by Lemma 3.11. Uniqueness, however, must be
proved by another method as in Section 3.2, because the cost functional is no longer convex for
price impact reversion.
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Again, it will be enough to prove our results for X0 < 0. The case for X0 > 0 will then follow
by the symmetry of the problem formulation. The case of round trips with X0 = 0 will be analyzed
by a limiting procedure.

Lemma 3.7. Under Assumption 2.15, the following conclusions hold.

(a) x 7→ xf(x) is increasing on R (or, equivalently, F̃ is convex).

(b) For all a ∈ (0, 1), x 7→ af(ax)/f(x) is nondecreasing on R+ and nonincreasing on R− and
takes values in (0, 1).

(c) For all x > 0, (0, 1) ∋ a 7−→ 1−a2f(ax)/f(x)
1−af(ax)/f(x)

is increasing.

(d) For all x > 0, (0, 1) ∋ a 7−→ a−1 1−a2f(x)/f(x/a)
1−af(x)/f(x/a)

is decreasing.

Proof under Assumption 2.15 (a): (a) The derivative is positive since xf ′(x)/f(x) > −1 by
Assumption 2.15 (a).

(b) Since x 7→ xf(x) is increasing, af(ax)/f(x) = [axf(ax)]/[xf(x)] ∈ (0, 1). The derivative
of x 7→ af(ax)/f(x) is equal to [a2f ′(ax)f(x) − af(ax)f ′(x)]/f(x)2. It is nonnegative on R+ and
nonpositive on R− if and only if

af ′(ax)

f(ax)
≥
f ′(x)

f(x)
for x ≥ 0, and

af ′(ax)

f(ax)
≤
f ′(x)

f(x)
for x ≤ 0.

These conditions hold as a direct consequence of (20).
(c) For a fixed x ≥ 0, we set ψ(a) = af(ax)/f(x), which takes values in (0, 1). We need to

show that
d

da

1 − aψ(a)

1 − ψ(a)
=

(1 − a)ψ′(a) − ψ(a)(1 − ψ(a))

(1 − ψ(a))2
> 0.

This condition holds if and only if
ψ′(a)

ψ(a)
>

1 − ψ(a)

1 − a
.

It is thus sufficient to show that ψ′/ψ is nonincreasing, since then we would have

1 − ψ(a) <

∫ 1

a

ψ′(u)

ψ(u)
du ≤ (1 − a)

ψ′(a)

ψ(a)
.

This leads to requiring ψψ′′ − (ψ′)2 ≤ 0, which in turn leads to the following condition:

1 + (ax)2

(
f ′(ax)

f(ax)

)2

− (ax)2 f
′′(ax)

f(ax)
≥ 0 for a ∈ (0, 1).

The latter condition is ensured by Assumption (21), since xf ′(x)/f(x) ∈ (−1, 0] and thus

(xf ′(x)

f(x)

)2

+
xf ′(x)

f(x)
< 0.

(d) We fix x > 0 and let ψ̃(a) := af(x)/f(x/a). We need to show that

d

da
a−11 − aψ̃(a)

1 − ψ̃(a)
=
ψ̃(a) − 1 + aψ̃′(a)(1 − a)

a2(1 − ψ̃(a))2
< 0.
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This condition holds if and only if

aψ̃′(a) <
1 − ψ̃(a)

1 − a
.

Hence it is enough to show that a 7→ aψ̃′(a) is nondecreasing, because then we would have

1 − ψ̃(a) >

∫ 1

a

uψ̃′(u) du ≥ (1 − a)aψ̃′(a).

Some calculations lead to

d

da
aψ̃′(a) =

1

f(x/a)

(
1 +

x

a

f ′(x/a)

f(x/a)
+ 2

(
x

a

f ′(x/a)

f(x/a)

)2

−
(x
a

)2 f ′′(x/a)

f(x/a)

)
,

which is nonnegative by Assumption (21).
Proof of Lemma 3.7 under Assumption 2.15 (a): Points (a) and (b) are trivial. To check
(c) and (d), we have to show that

a ∈ (0, 1), a 7→
1 − a2+α

1 − a1+α
and a 7→

a− a2+α

1 − a2+α
= 1 −

1 − a

1 − a2+α

are increasing. It is however easy to check by derivating that a 7→ 1−aγ

1−aβ is increasing on (0, 1) when
0 < β < γ, which gives the result.

Lemma 3.8. Under Assumption 2.15, the following conclusions hold.

(a) For each a ∈ (0, 1), the function hP,a(x) = xf(x/a)/a−af(x)
f(x/a)−af(x)

is well-defined for x ∈ R and is
strictly increasing.

(b) For all a, b ∈ (0, 1) and ν > 0, we have the inequalities

h−1
P,a(ν)/a > h−1

P,b(ν) and h−1
P,b(ν) < ν.

(c) The function HP : (x, a) ∈ (0,∞)× (0, 1) 7→
(
xf(x/a)/a−af(x)

f(x/a)−af(x)
,−x2f(x)f(x/a)(1/a−1)

f(x/a)−af(x)

)
is one-to-

one.

Proof: (a) First let us observe that the denominator of hP,a is positive, since x 7→ xf(x) is
increasing by Lemma 3.7 (a). We have

hP,a(x) = x

(
1 +

a−1 − 1

1 − af(x)/f(x/a)

)
. (51)

Again by Lemma 3.7, the fraction is positive and, as a function of x, nondecreasing on R+ and
nonincreasing R−, which gives the result.

(b) It is clear from (51) that hP,a(x) > x for x > 0 and therefore h−1
P,a(x) < x. Let us now

consider a, b ∈ (0, 1), ν > 0 and set x′ = h−1
P,a(ν)/a, x = h−1

P,b(ν). Then both x and x′ are positive,
and we need to show that x′ > x. It follows that

ν = x′
f(x′) − a2f(ax′)

f(x′) − af(ax′)
= x

f(x/b)/b− bf(x)

f(x/b) − bf(x)
.
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Let us suppose by a way of contradiction that x′ ≤ x. Then, using Lemma 3.7 (b) and the fact
that u ∈ [0, 1) 7→ (1 − au)/(1 − u) is increasing, we get:

1 − a2f(ax)/f(x)

1 − af(ax)/f(x)
≥

1 − a2f(ax′)/f(x′)

1 − af(ax′)/f(x′)
≥ b−11 − b2f(x)/f(x/b)

1 − bf(x)/f(x/b)
.

Again by Lemma 3.7, the left-hand-side is increasing w.r.t a and the right-hand side is decreasing
w.r.t. b. Moreover, both have the same limit,

2 + xf ′(x)/f(x)

1 + xf ′(x)/f(x)
,

when a ↑ 1 and b ↑ 1, which leads to a contradiction.
(c) Let (a1, y1), (a2, y2) ∈ (0, 1) × (0,∞) be such that HP (a1, y1) = HP (a2, y2). By (51), we

then have
{
y1(1 + γ1) = y2(1 + γ2)

y2
1f(y1)γ1 = y2

2f(y2)γ2,
where γi :=

(a−1
i − 1)f(yi/ai)

f(yi/ai) − aif(yi)
for i = 1, 2. (52)

Let us assume for example that γ2 ≤ γ1 and set η = γ2/γ1 ∈ (0, 1]. Eliminating y1 in (52) yields

φ(η) :=
(1 + ηγ1

1 + γ1

)2

f
(
y2

1 + ηγ1

1 + γ1

)
− ηf(y2) = 0.

Since x 7→ xf(x) is increasing by Lemma 3.7 (a), we have

η ∈ (0, 1), φ(η) <
1 − η

1 + γ1
f(y2) < 0.

Thus, η = 1 is the only zero of φ(η). We may thus conclude that γ1 = γ2 and in turn that
y1 = y2. Finally, the equality γ1 = γ2 leads to a1 = a2 due to Lemma 3.7 (d), since

1 + γi = a−1
i

1 − a2
i f(yi)/f(yi/ai)

1 − aif(yi)/f(yi/ai)
.

In the Model with price impact reversion, we need to minimize the following cost functional:

CP (x0, . . . , xn,α) =
N∑

n=0

G(F (Dn) + xn) −G(F (Dn)), (53)

where D0 = 0 and Dn = e−αnF−1(xn−1 + F (Dn−1)) for 1 ≤ n ≤ N . By f̂(x) = 1/f(F−1(x)) we
denote again the derivative of F−1.

Lemma 3.9. We have the following recursive formula for i = 0, . . . , N − 1,

∂CP

∂xi
= F−1

(
F (Di) + xi

)
+ e−αi+1f(Di+1)f̂

(
xi + F (Di)

)[ ∂CP

∂xi+1
−Di+1

]
. (54)

Moreover, for j = 1, . . . , N ,

∂CP

∂αj
= −Djf(Dj)

(
∂CP

∂xj
−Dj

)
. (55)

28



Optimal trade execution and absence of price manipulations

Proof: We have D1 = e−α1F−1(x0) and Dn = e−αnF−1(xn−1 + F (Dn−1)) for 1 ≤ n ≤ N . Thus,
we obtain the following recursive relations between the derivatives of Dn with respect to xi.

∂Dn

∂xi

= 0 for i ≥ n,
∂Dn

∂xn−1

= e−αn f̂(xn−1 + F (Dn−1)),

∂Dn

∂xi

= e−αi+1f(Di+1)f̂(xi + F (Di))
∂Dn

∂xi+1

for 1 ≤ i ≤ n− 1.

Thus, by (53),

∂CP

∂xi

= F−1(xi + F (Di)) +
N∑

n=i+1

f(Dn)
[
F−1(xn + F (Dn)) −Dn

]∂Dn

∂xi

(56)

= F−1(xi + F (Di)) + e−αi+1f(Di+1)f̂
(
xi + F (Di)

)[
F−1(xi+1 + F (Di+1)) −Di+1

]

+e−αi+1f(Di+1)f̂
(
xi + F (Di)

) N∑

n=i+2

f(Dn)
[
F−1(xn + F (Dn)) −Dn

] ∂Dn

∂xi+1
.

By (56), the sum in the preceding line satisfies

N∑

n=i+2

f(Dn)
[
F−1(xn + F (Dn)) −Dn

] ∂Dn

∂xi+1
=

∂CP

∂xi+1
− F−1(xi+1 + F (Di+1)).

Hence,

∂CP

∂xi
= F−1(xi + F (Di)) + e−αi+1f(Di+1)f̂(xi + F (Di))

[ ∂CP

∂xi+1
−Di+1

]
,

which is our formula (54).
As to (55), we use again the recursive scheme at the beginning of this proof to obtain formulas

for the derivatives of Dn with respect to αj:

∂Dn

∂αj
= 0 for j > n,

∂Dn

∂αn
= −Dn,

∂Dn

∂αj
= −Djf(Dj)

∂Dn

∂xj
for 1 ≤ j ≤ n− 1.

We therefore obtain from (53):

∂CP

∂αi
=

N∑

n=i

f(Dn)
[
F−1(xn + F (Dn)) −Dn

]∂Dn

∂αi

= −Dif(Di)[F
−1(xi + F (Di)) −Di]

−
N∑

n=i+1

f(Dn)Dif(Di)
[
F−1(xn + F (Dn)) −Dn

]∂Dn

∂xi

= −Dif(Di)

(
F−1(xi + F (Di)) −Di +

∂CP

∂xi

− F−1(xi + F (Di))

)

= −Dif(Di)

(
∂CP

∂xi

−Di

)
.
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Remark 3.10. A consequence of this lemma is that the optimal strategy given by [2] on the
homogeneous time spacing grid T ∗ is a critical point for the minimization in (x,α). Indeed, we

have then Di = a∗F−1(ξP
0 ) for any i, and therefore ∂CP

∂αi
does not depend on i. ♦

Lemma 3.11. Assume that α ∈ A∗. Then, CP (x,α) → ∞ as |x| → ∞ under Assumption 2.15.

Proof: Equation (53) yields

CP (x,α)

=
N∑

n=0

F̃
(
F−1(F (Dn) + xn)

)
− F̃ (Dn)

=
N−1∑

n=0

[
F̃
(
F−1(F (Dn) + xn)

)
− F̃

(
e−αn+1F−1(F (Dn) + xn)

)]
+ F̃

(
F−1(F (DN) + xN )

)
.

Let a = maxi=1,...,N e
−αi < 1. Since x 7→ xf(x) is increasing on R, we have for x ∈ R, a ∈ [0, a],

F̃ (x) − F̃ (ax) =

∫ x

ax

yf(y)dy ≥

∫ x

ax

yf(y)dy ≥ a(1 − a)x2f(ax) =: H(x).

Defining T2(x) =
(
x0, x1 + F−1(D1), . . . , xN + F−1(DN )

)
, we thus get

CP (x,α) ≥ H(|T2(x)|∞).

From (20), x 7→ xf(x) is increasing and therefore H(x) → +∞ as |x| → +∞. It is therefore
sufficient to have T2(x) → +∞ for |x| → +∞. To this end, let (xk) be a sequence such that the
sequence (T2(x

k)) is bounded. We will show that (xk) then must also be bounded. It is clear that
the first coordinate xk

0 is bounded. Therefore, F−1(Dk
1) is also bounded, which in turn implies

that the second coordinate of (T2(x
k)) is bounded. We then get that (xk

1) is bounded. An easy
induction on coordinates thus gives the desired result.

We are now in position to prove the main results for the Model with price impact reversion.

Proof of Proposition 2.16: Let us first assume X0 < 0. We can assume without loss of generality
that α ∈ A∗, for otherwise we can simply merge two trades occurring at the same time into a
single trade. If x is the minimizer of CP (·,α) on Ξ, then there must be a Lagrange multiplier ν
such that x is a critical point of y 7→ CP (y,α) − ν

∑N
i=0 yi. Hence, (54) yields that

ν = hP,ai+1
(Di+1), i = 0, . . . , N − 1,

where ai+1 = e−αi+1 and hP,a is defined as in Lemma 3.8. Since Di+1 = ai+1F
−1(xi + F (Di)), we

get with Lemma 3.8 that

x0 = F (h−1
P,a1

(ν)/a1), xi = F (h−1
P,ai+1

(ν)/ai+1) − F (h−1
P,ai

(ν)), i = 1, . . . , N − 1.

For the last trade, we also get that ν = F−1(xN +F (DN)) and xN = F (ν)−F (h−1
P,aN

(ν)). Therefore,
summing all the trades, we get:

−X0 = F (ν) +

N∑

i=1

[
F (h−1

P,ai
(ν)/ai) − F (h−1

P,ai
(ν))

]
. (57)
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Now let us observe that F is increasing on R, and for any a ∈ (0, 1), y 7→ F (y/a) − F (y) is
increasing (its derivative is positive by Lemma 3.7 (a)). Besides, F and h−1

P,a are increasing for
any a ∈ (0, 1) and therefore ν is uniquely determined by the above equation. We have moreover
ν > 0 because the left-hand side vanishes when ν is equal to 0. This proves that there a unique
critical point, which then is necessarily the global minimum of CP by Lemma 3.11.

Next, xi > 0 for i = 0, . . . , N , due to Lemma 3.7 and the fact that F is increasing.
Finally we consider the case X0 = 0. As in the proof of Proposition 2.10, we can show that a

round trip such that CP (x,α) ≤ 0 necessarily satisfies CP (x,α) = 0. Moreover for α ∈ A∗, we
see looking at the proof of Proposition 2.16 that (0, . . . , 0) is the only critical point when X0 = 0
since we necessarily have ν = 0 by (57). Therefore, it is also the unique minimum of CP by
Lemma 3.11.

Proof of Theorem 2.17: The existence of a minimizer (ξP ,α∗) and the fact that it belongs to
Ξ+ ×A∗ follow exactly as in the proof of Theorem 2.11.

Now suppose that (x,α) is a minimizer of CP for X0 < 0. Due to the preceding step, there
must be Lagrange multipliers ν, λ ∈ R such that (x,α) is a critical point of (y,β) 7→ CP (y,β) −
ν
∑N

i=0 yi − λ
∑N

j=1 βj .
From (54), we easily obtain that for i = 1, . . . , N ,

ν =
e−αif(Di)

f(eαiDi)
[ν −Di] + eαiDi

and ν = F−1(xN + F (DN)) for the last trade. We then deduce from (55) that

ν = Di
eαif(eαiDi) − e−αif(Di)

f(eαiDi) − e−αif(Di)

λ = −D2
i f(Di)

(eαi − 1)f(eαiDi)

f(eαiDi) − e−αif(Di)
,

i.e., (ν, λ) = HP (Di, ai) with ai = e−αi . As in the proof of Proposition 2.16 we get (57), which
(by our standing assumption X0 < 0) ensures ν > 0 and in turn Di > 0 for i = 1, . . . , N . Due
to Lemma 3.8, HP is one-to-one on (0,∞) × (0, 1), and therefore α1 = · · · = αN and D1 = · · · =
DN . Then, D1 = a∗F−1(x0). Since Di+1 = a∗F−1(xi + F (Di)), we get xi = x0 − F (Di) =
x0 − F (a∗F−1(x0)), and therefore xN = −X0 − Nx0 + (N − 1)F (a∗F−1(x0)). Combining this
with ν = F−1(xN + F (DN)), we get

F−1
(
−X0 −N [x0 − F (a∗F−1(x0))]

)
= hP,a∗(F−1(x0)).

We refer to [2, Lemma C.3] for the existence, uniqueness, and positivity of the solution x0 of this
equation. It follows that there is a unique critical point of CP on Ξ+ × A∗, which is necessarily
the global minimum.

Proof of Corollary 2.18: The result follows immediately from Proposition 2.16 and Theo-
rem 2.17.

4 Conclusion

We have introduced two variants of a market impact model in which price impact is a nonlinear
function of volume impact and in which either volume or price impact reverts on an exponential
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scale. In both model variants, there are unique optimal strategies for the liquidation or acquisition
of asset positions, when optimality is defined in terms of the minimization of the expected liqui-
dation costs. Existence and structure of these strategies allows us to conclude that our market
impact model admits neither price manipulation in the sense of Huberman and Stanzl [14] nor
transaction-triggered price manipulation in the sense of Alfonsi, Schied, and Slynko [3].

Our optimal execution strategies turn out to be deterministic, because we are minimizing the
expected execution costs. As argued by Almgren and Chriss [5, 6], trade execution strategies used
in practice should also take volatility risk into account, which may lead to adaptive strategies. We
refer to [18, 19]. For future research, it would also be interesting to allow certain model parameters
to be random.
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