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we know a considerable amount
about the performance of tac-
tical style allocation models in
equity markets, but very little

evidence is available on the performance of sys-
tematic dynamic allocation decisions on various
bond benchmarks with different maturities.
Most ofthe literature on predictability in bond
returns focuses on timing bonds versus stocks
or bonds versus cash, with no emphasis on the
timing of bonds with different maturities.

Research on tactical asset allocation deci-
sions involving bond markets includes Shiller
[1979], Fania [1981], ShiUer, Campbell, and
Schoenholtz [1983], Keim and Stambaugh
[1986], Campbell [1987], Fama and Bliss
[1987], Fama and French [1989], Campbell
and Shiller [1991], Ilmanen [1995, 1997],
Bekaert, Hodrick, and Marshall [1997], Lekkos
and Milas [2001], Ilmanen and Sayood [2002],
and Baker, Greenwood, and Wurgler [2003].
These authors focus on exploiting pre-
dictability in a global bond portfolio and hence
in the level of interest rates, but they do not
try to exploit predictability on other dimen-
sions of the shape of the yield curve such as
slope and curvature.^

It is only recently that some articles have
recognized the benefits of exploiting pre-
dictabihty in the shape of the yield curve,
although to the best of our knowledge, there
are only two. Dolan [1999] argues that the cur-
vature parameter ofthe yield curve, estimated
using the Nelson-Siegel [1987] model, can be

predicted using simple parsimonious models,
and shows these forecasts have investment sig-
nificance in the selection of bullet over barbell
portfolios. Diebold and Li [2002] estimate
autoregressive models for predicting Nelson-
Siegel level, slope, and curvature factors.

We extend this research on several dimen-
sions. First, we test for statistical significance in
the predictive power of a series of economi-
cally meaningful variables. This approach stands
in sharp contrast with Dolan [1999] and
Diebold and Li [2002], who use only infor-
mation about past values ofthe term structure
parameters in their predictive experiments. We
thus bridge the gap in the literature on pre-
dictability of asset returns on the basis of vari-
ables such as dividend yields or term spread.
Our work is also related to research based on
joint macrofinance modeling strategy of the
term structure of interest rates (e.g., Ang and
Piazzesi [2003], Diebold, Rudebusch, and
Aruoba [2005], or Rudebusch and Wu [2004]).

Like Pesaran and Timmermann [1995],
we investigate the predictability of bond port-
folio returns using a robust recursive modeling
approach based on multifactor models. This
allows us to alleviate concerns over spurious
results driven by data-mining biases. In the
interest of robustness and in an attempt to
account for model uncertainty, we use a
Bayesian econometric approach, known as thick
modeling, which selects at each date a
"council" of models to make predictions rather
than a single model.
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Another contribution is demonstration of how this
predictability in various segments ofthe yield curve can
be used to generate significant outperformance through
systematic trading strategies involving simple bullet and
barbell bond portfolios and butterfly strategies with fixed-
income derivatives.

I. DATA AND METHODOLOGY

Following Dolan [1999] and Diebold and Li [2002],
we use a parsimonious model ofthe yield curve to extract
the time-varying parameters that we adopt as a proxy for
factors affecting the shape ofthe yield curve. We use the
Nelson and Siegel [1987] model. One could also use the
Vasicek [1977] model or the extended Vasicek model,
among many others.^

The Nelson-Siegel model has become a popular
way for practitioners to parameterize the term structure
of interest rates. Consistent with principal components
analysis (PCA) results, it entails four parameters and is
modeled as follows:'

where:

R{t, ff) = rate at time zero with maturity 0;
)8Q = limit of R{t, d) 2iS 6 goes to infinity. In

practice, ^Q should be regarded as a long-
term interest rate;

j3, = limit of/3Q - R{t, 9) 2iS 9 goes to 0. In
practice, ^j should be regarded as the
short- to long-term spread;

T = scale parameter that measures the rate at
which the short-term and medium-term
components decay to zero; and

)8, = curvature parameter.

The advantage ofthis model is that the three para-
meters J3Q, /3p and ^2 can directly be interpreted as level,
slope, and curvature changes in the yield curve. As illus-
trated in Exhibit 1, the sensitivities S. = dR{t, d)/dp. of
swap rates to each parameter j3. for i = 0, 1,2 can be inter-
preted as follows. The level factor Sg is constant across
maturities. The slope factor Sj is highest for short matu-
rities and declines exponentially toward zero as maturity
increases. Starting from zero for short maturities, the cur-
vature factor Sj reaches a maximum at the middle of the
maturity spectrum and then declines to zero for longer
maturities.
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The parameters J3Q, /3p and P2 are estimated monthly
using an ordinary least squares optimization program,
which consists, for a basket of yields, of minimizing the
sum ofthe squared spread between the market yield and
the theoretical yield obtained with the model.

We see that the evolution ofthe swap rate R{t, &) is
driven entirely by evolution ofthe beta parameters, as the
scale parameter T is fixed and taken to equal 3.* More
specifically, we estimated the parameters P^, j3j, and ^j 3S
follows. We use monthly data from June 7, 1994, through
September 5, 2003, on 12 yields: 3-month, 6-month, and
1_, 2-, 3-, 4-, 5-, 7-, 10-, 15-, 20-, and 30-year swap
rates.'

Each month, we estimate the swap curve by mini-
mizing the ordinary least squares model:

Min \ . , (2)

where:

S{t, 6.) = actual market yield with maturity 0., and
R{t, 6.) = theoretical yield with maturity 6. given

by the model [see Equation (1)].

We try to predict the dynamics of changes in beta
parameters, regarded respectively as changes in level, slope,
and curvature coefficients. Exhibit 2 plots the time evo-
lution of these parameters in the sample period, and
Exhibit 3 reports some basic descriptive statistics.

A casual inspection of Exhibits 2 and 3 seems to sug-
gest that J8Q and j3j are not stationary, while /Jj seems to
be. To confirm this first impression, we perform formal
Dickey-Fiiller tests of stationarity. The null hypothesis of
a unit root in the dynamics of the beta parameters is
rejected only in the case of jSj. Yet after differentiating
once, all three parameters appear to be stationary. In other
words, while J3Q and P^ are 1(0) processes, ^2 î  ^^ H^)
process.

Further analysis shows little or no evidence ofthe
presence of autocorrelation in the differentiated series,
which suggests that autoregressive models based only on
past data are not likely to have good predictive power, ^Q
in particular seems to follow a random walk, and we
expect it will be hard to predict change in this parameter.

It is only in the case of changes in /Jj that an AR(1)
model can be fitted to the data. The results for the period
covering July 1994 to September 2003 show an R-square
of 0.747, with a t-statistic of 18.654 associated with the
lagged value of changes in jSj, which therefore appears
strongly significant. The model, however, delivers only
modest out-of-sample performance in terms of predic-
tive ability.

Overall, this suggests one should try to use lagged
explanatory variables to predict changes in the level, slope,
and curvature coefficients, rather than only past values of
these parameters as in Dolan [1999] and Diebold and Li
[2002].

We first consider, for the sake of illustration, a simple
vector autoregressive (VAR) model for the dynamics of ̂ ^:

d/i.it) = t - I) +

- 2) + e,

- 2) +

(3)

where dp.{t) := j3.(t) - p.{t - 1), and ê  is a white noise
process. This model has the highest explanatory power
measured in terms ofthe Schwartz information criterion
for the calibration sample (September 1994 through
August 1998).

The model is calibrated on a four-year rolling
window sample, and used to make out-of-sample pre-
dictions for the period from September 1998 to Sep-
tember 2003. Exhibit 4 provides information on the
estimated model for the last sample date (calibration sample
covering September 1999 through August 2003, for pre-
dicting the value of the change in j3, between August
2003 and September 2003). We use White heteroscedas-
ticity-consistent standard errors and covariance estimates.

The R-square for the model is 0.326. For out-of-
sample prediction purposes in the 61 months from Sep-
tember 1998 to September 2003, the model generates a
hit rate of 62%, statistically greater than 50% at the 5%
level.

We also try to test the robustness of the forecast as
a function of confidence in the prediction as follows.
Assuming that the error in prediction is normally dis-
tributed, we can estimate the probability of predicting
that j3j will increase (decline) while it will actually decline
(increase), and we may want to make predictions only
when confidence is high.

We define x% as a confidence level as follows. When
the probability of a correct forecast is lower than 50% -
x%, we do not make any prediction. The resulting fore-
casting success as a function of x is presented in Exhibit 5.
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E X H I B I T 2
Time Series of Beta Parameters in Nelson-Siegel Model

The numbers reported show a regular increase in the hit
rate as a function of x, which can be taken as an indica-
tion of robustness in the out-of-sample forecasting exercise.

This illustration suggests there is some degree of pre-
dictability in the time series evolution of beta parameters.

II. FORECASTING CHANGES IN THE
SHAPE OF THE YIELD CURVE

A more thorough analysis of the predictability of
parameter evolution uses economically motivated vari-
ables as predictors. We first report some evidence of in-
sample predictability in the shape of the yield curve,
depending on a limited number of economically moti-
vated variables. We then analyze out-of-sample pre-
dictability using multivariate models.

E X H I B I T 4
Information for Last Sample Date

- - beta I
—bela2

E X H I B I T
Beta Parameter

BetaO

Beta 1

Beta 2

3
Statistics

Mean

6.848202

-2.19569

0.40457

St. Dev.

0.622541

1.545144

1.670274

Serial Correlation

0.94

0.98

0.86

Correl. with beta 0

1

0.321486

0.463554

Correl. with beta 1

0.321486

1

-0.10449

Correl. with beta 2

0.463554

-0.10449

1

Variable Coefficient Standard Deviation T-Statistic Prob.

0.572229

0.857365

0.404483

0.215721

0.191954

0.106880

2.652632

4.466515

3.784466

0.0110

0.0001

0.0005

In-Sample Evidence of Predictability

Trying to screen hundreds of variables using step-
wise regression techniques usually leads to high in-sample
R-squares but low out-of-sample R-squares (a robustness
problem). Therefore, to forecast changes in beta parame-
ters, we instead consider a short list of meaningful vari-
ables chosen on the basis of some evidence of their ability
to predict asset returns, as well as their natural influence
on asset returns.
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E X H I B I T 5
Results of Forecasting Exercise

X

Number of Bets
Hit Rate

0%
61
62%

5%
50
62%

10%

31
74%

15%
23
78%

20%

17
82%

25%
14
86%

30%

10
90%

Most of these variables fall into three broad categories.

1. Variables related to interest rates:

• Level of the t e rm structure of interest rates,

proxied by the sho r t - t e rm rate. Fama and

Schwert [1977] and Fama [1981] show this

variable is negatively correlated wi th future

stock market returns; it serves as a proxy for

expectations of future economic activity.

• Slope of the te rm structure of interest rates,

proxied by the term spread. An upward-sloping

yield curve signals expectations of an increase

in the short - term rate, usually associated wi th

an economic recovery.

• Expectations of future values of interest rates,

proxied by the mean one-year forward rates for

maturities ranging from one to five years. It has

been argued that forward rates can be used to

predict future bond returns (see Fama and Bliss

[1987] or Cochrane and Piazzesi [2002]).'

2. Variables related to risk:

• Quantity of risk, proxied by historical volatility

( int ramonth volatility of stock returns) or

expected volatility (implicit volatility from

option prices).

• Price of risk, proxied by credit spreads on high-

yield debt as well as emerging market credit

spreads. T h e price of risk captures the effect

of default premiums, which track long- term

business cycle conditions (higher during reces-

sions, lower during expansions) (see Fama and

French [1998]).

3. Variables related to relative cheapness of stock

prices, proxied by dividend yields: It has been

shown that the dividend yield is associated with

slow mean reversion in stock returns across sev-

eral economic cycles (Keim and Stambaugh

[1986], CampbeU and ShiUer [1991], Fama and

French [1998]). It serves as a proxy for time vari-

ation in the unobservable risk premium, since a

high dividend yield indicates that dividends have

been discounted at a higher rate.

We also include a short list of additional variables that
are known to have a natural impact on the shape of the yield
curve. The first one is the U.S. capacity utilization rate; when
it is high, a given indication of economic growth is more
likely to lead to infiation concerns, and therefore to poten-
tial increases in interest rates.^

We also include a sentiment variable, a measure of imbal-
ance between market volume on puts versus calls such as
the ratio of volume of call to volume of put options, and a
measure of relative cheapness of the bond market versus the
stock market through the differential between the E/P ratio
on the S&P 500 and the yield of the ten-year Treasury note.
We finally include as in Ilmanen [1995] a measure of U.S.
inverse relative wealth as a proxy for time-varying risk aver-
sion (because relative risk aversion is negatively related to
relative wealth), which in turn can explain time variations
in the risk premium.

Exhibit 6 lists the 12 variables and past values of
changes in the beta parameters themselves. Monthly data
on these variables are collected from DataStream
(Thomson Financial) from September 1994 to September
2003. In a first-step analysis, we run in-sample first-pass
regressions of changes in the beta parameters on these
one-month lagged variables. Exhibit 6 provides infor-
mation on the (-statistic associated with the slope coeffi-
cient of the regression and out-of-sample hit rates of
predictive models based on such single-variable OLS
regressions.

Overall, none of the selected variables (one-month
lagged value) appears significant at the 5% level for pre-
dicting changes in the level of the yield curve, and hit
rates for forecasts using a simple OLS regression are poor.
These findings again strongly suggest that there is little
predictability in long-term rates over a one-month
horizon. Similar results are obtained for changes in the cur-
vature component. The results are much better for
changes in the slope of the yield curve, as several vari-
ables seem to have a significant lagged impact on changes
in this variable, with relatively high levels of associated
hit rates.

Out-of-Sample Evidence of Predictability

While we obtain encouraging results for predict-
ability of changes in the slope parameter, there are a
number of reasons to go beyond such a simplified analysis.
First, some of these variables may not show predictive
power at a one-month lag but be more significant at a
different lag. More important, a single-factor specification
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E X H I B I T 6
List of Variables and Lagged Impact on Beta Parameters

Name

Default Spread

CBOE OEX Volatility (VIX)

Intramonth Volatility of Bond Returns

S&P 500 Dividend Yield

US Capacity Utilization Rate

Spread Emerging Market

Lehman U.S. Treasury Bills

E / P - Yield of 10-yearT-Note

Term Spread (20 Year - T-Bill)

Mean U.S. Forward Rate

Put Call Ratio (CBOE all options)

Inverse Relative U.S. Wealth

DA.(-i)

D/3,(-l)

dp.
0.93

-0.09

0.37

-0.61

-0.57

1.38

0.83

0.59

0.19

-1.16

-1.03

-0.86

-1.72

1.02

-0.33

T-Stat

dp,
-1.87

-2.14

1.85

1.58

2.28

-0.62

-3.97

-3.54

0.81

2.57

-1.51

-2.33

2.54

0.88

1.39

dp.
-0.11

0.35

1.14

-0.73

-0.59

2.44

1.29

1.66

0.41

-1.74

-1.10

-0.49

0.83

-1.67

1.36

dp.
33%

42%

54%

58%

50%

50%

58%

54%

38%

33%

58%

58%

58%

46%

58%

Hit Rate

dp.
63%

63%

63%

63%

63%

63%

67%

50%

58%

63%

63%

63%

63%

63%

58%

dp.
58%

42%

46%

50%

58%

42%

58%

63%

46%

50%

46%

33%

42%

58%

58%

is not likely to be the best specification. That is, it is pos-
sible that a non-linear model involving more than one of
the variables will turn out to have significant predictive
power. Also, predictability should be tested on an out-
of-sample basis, with a process focused on finding the best
possible trade-off between quahty of fit and robustness.

Given the wide range of filters applied to select fac-
tors and models, there is of course a potential concern
over the pitfalls of data mining. We try to mitigate this
problem by using a recursive modeling and thick approach.
The recursive modeling approach uses a three-stage pro-
cedure involving a calibration period, a training period,
and a trading period. This procedure, suggested, for
example, by Pesaran and Timmermann [1995], directly
relates to the critique made by Bossaerts and Hillion
[1999], who show the insufficiency of in-saniple criteria
to forecast out-of-sample information ratios.

For example, for a forecast starting in September
2000, we first decompose the six-year period September
1994 through August 2000 into two subperiods, a cah-
bration period and a training period. In the calibration
period, we use a four-year rolling window of data (starting
in September 1994) to calibrate the model, i.e., estimate
the coefficients. For the training period, we use a two-year

rolling window of data (starting in September 1998) to
backtest the model, i.e., generate forecasts and compute
hit rates. Finally, we select the model at the end of the
training period and use it subsequently in the three-year
trading period (September 2000 to September 2003).

We actually extend the Pesaran and Timmermann
[1995] recursive modehng approach to account for model
uncertainty. They select in each period only one fore-
cast, the forecast generated by the best model selected on
the basis of a specified selection criterion (such as adjusted
R-square, BIC, Akaike, or Schwartz) that weights good-
ness of fit against parsimony ofthe specification. We follow
Granger and Jeon [2004] and label this approach "thin"
modeling in that the forecasts of excess returns and con-
sequently the performance ofthe asset allocation strategy
are described over time by a thin line.

One limit of thin modeling is that model uncertainty
is not considered. In each period, the information coming
from the discarded models is ignored for the forecasting and
portfolio allocation exercise. Focusing on a single predic-
tive model may not be optimal, according to recent research
along Bayesian lines, which stresses the importance of the
estimation risk for portfolio allocation (see, for example,
Barberis [2000] or Kandel and Stambaugh [1996]).
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A natural way to interpret model uncertainty is to
refrain from assuming there is a true model and instead
attach probabilities to different possible models. This
approach has been labeled Bayesian model averaging (see,
for example, Avramov [2002] or Cremers [2002]).
Bayesian methodology reveals the possibility of in-sample
and out-of-sample predictability of stock returns, even
when commonly adopted model selection criteria fail to
demonstrate out-of-sample predictability.

The main difficulty with the application of Bayesian
model averaging to problems Hke ours hes in specifica-
tion of prior distributions for the parameters in all pos-
sible models of interest. Doppelhofer, Miller, and
Sala-i-Martin [2004] have recently proposed an approach
labeled Bayesian averaging of classical estimates (BACE)
that overcomes the need to specify priors by combining
the averaging of estimates across models, a Bayesian con-
cept, with classic OLS estimation, interpretable in the
Bayesian camp as coming from the assumption of diffuse,
non-informative, priors.'̂

In a related line of research, Aiolfi and Favero [2002]
argue that portfolio allocation strategies based on a thick
modeling strategy (i.e., averaging across the different port-
folio choices driven by predictions of excess returns) sys-
tematically outperform portfolio allocation strategies based
on thin modeling. We apply the BACE approach by selecting
at each date a "council" of models to make predictions rather
than using a single model. Most long-short managers could
use a similar methodology to enhance the performance of
their portfolios without having to rely on the alleged supe-
rior performance of any specific predictive model.

To forecast changes in beta parameters, we use the
12 variables in Exhibit 6 and lagged values ofthe beta
parameters. We test the explanatory power of not only the
one-month lag X̂  j , but also ofthe squared lag X^ "̂ (a
measure of volatility), relative changes log(X^ ^/X^j) (when
relevant, i.e., when the variable is not already expressed
as a return), and absolute changes X̂  j — X̂  j -

The next step is to select a set of models to forecast
changes in the beta parameters. The process is based on
two types of indicators. Indicators of type 1 are meant to
represent the in-sample performance of the forecasting
model, measured in terms of t-statistics and the Schwartz
information criterion (SIC). The SIC lets us handicap
the different models for the number of degrees of freedom
more severely than by the adjusted R-square measure. To
increase our confidence in the model's robustness, we do
not consider models with more than four variables.'"

Indicators of type 2 are meant to represent the out-

of-sample forecasting power measured in terms of hit rate
(accuracy ofthe direction).

During the trading period, we allow for a dynamic
updating procedure. On each date, we select a group of
models according to criteria as follows: 1) all variables in
the model are significant at the 5% confidence level; 2)
variables have been significant at the 5% level in 95% of
the previous 12 months; and 3) hit rates in the training
sample are higher than 0.55.

Criterion (1) ensures we are selecting a valid model;
criterion (2) ensures that the model has shown robust-
ness through time; and criterion (3) ensures that the model
has demonstrated some minimum level of correct fore-
casting. A last step is to eliminate redundant models. More
specifically, we do not let models that show 100% agree-
ment to be part ofthe same "council."

Using a normality assumption for the residuals of
the OLS regressions, we estimate the probability p that
changes in beta parameters are positive. In a thick mod-
eling approach, one is left with n potentially conflicting
predictions at each date. We denote by p. the predicted
probability for a positive change (increase) in a given beta
parameter for model /.

Two important quantities of interest are the average
forecast probability:

'

and the standard deviation ofthe forecast:

n~

where w. is the weight associated with model i. This weight
can be a function ofthe model's perceived ability to fore-
cast. Given that no obviously relevant weighting scheme
is available in our context, since the filter we have applied
implies a relative level of homogeneity in the models' (in-
sample measures of) performance, we set this weight equal
to l/n.

The prediction rule is as follows. When m ̂  exceeds
50% (the neutral view), this means that on average the
models in the council predict the beta parameter to increase
in value (positive change). We take the confidence in the
prediction to be a function of how far above or below the
neutral value of 50% the average m is. We distinguish
between two results: cases when the average forecast prob-
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E X H I B I T 7

Outcome of Predictive Models

Number of Stand. Dev. away from Neutral View
Number of Bets

Hit Rate

Number of Stand. Dev. away from Neutral View
Number of Bets
Hit Rate

0

43
67%

0
37

54%

0.5
34

68%

0.5
26

58%

1

27

67%

1

16
69%

1.5
14

71%

1.5
9

56%

2
9

67%

2
7

71%

ability is more than one standard deviation away from 50%
(lower confidence in the forecast), and cases when the
average forecast probability is less than one standard devi-
ation away from 50% (higher confidence in the forecast).

The results for the out-of-sample period September
2000 to September 2003 are summarized in Exhibit 7.

Given our set of filters, it actually proves impossible
over the sample period to calibrate any satisfactory model
for changes in the level of interest rates (J3Q parameter),
again reinforcing the impression that changes in interest
rates are not predictable at the monthly level. Yet rather
satisfactory results are obtained for other dimensions ofthe
shape ofthe yield curve. That is, in the case of predic-
tions ofthe slope ofthe yield curve ()3|), hit rates are
always higher than two-thirds, whatever the number of
standard deviations away from the consensus we consider.
These numbers are significantly higher than 50% (null
hypothesis of no predictabihty) at the 2.5% confidence
level when there are at least 24 observations.

III. IMPLEMENTING SYSTEMATIC
TRADING STRATEGY

We can exploit this evidence in the level factor in
active portfolio strategies implemented through trading in
fixed-income derivatives. We use forecast changes in beta
parameters to implement a systematic trading strategy
using five standard swap butterflies. We first explain how
we build swap butterflies, and then the trading rule used
to position them, and finally we discuss the results.

Butterfly Strategies

Bond or swap butterflies are among the most
common active strategies that practitioners use to exploit
views on interest rate changes.

A swap butterfly is a combination of short- and long-
term plain vanilla swaps (called the wings) and a medium-
term swap (called the body). In a receiver swap butterfly, the
investor receives the fixed leg of the body and pays the
fixed leg ofthe wings, while the opposite holds in a payer
swap butterfly.^' Because a plain vanilla swap is simply a
bond minus a nominal amount, swap butterflies are built
just like bond butterflies (see Martellini, Priaulet, and Pri-
aulet [2003]). The advantage of swap butterflies is that
they are always cash-neutral, which is not necessarily the
case with bond butterflies.'^

In an attempt to bet on specific views on changes
of the shape (or slope and curvature) of the term struc-
ture, one wants to make the butterfly insensitive to the level
and slope factors while keeping it exposed to changes in
the curvature factor, or make it insensitive to the level
and curvature factors while keeping it exposed to changes
in the slope factor.

If we try to bet on a change in the curvature factor,
portfolio weights are obtained as the solution to:

= 0

= 0

where:
q^, a, and qi are the principal amounts of short-,
medium-, and long-term swaps;
D ,̂ D̂ ^̂ , and D̂  are the modified durations of short-,
medium-, and long-term swaps;
LJ, L̂ Ĵ, and L̂  are the sensitivity of short-, medium-,
and long-term swap rates to the coefficient P^; and
S^, Ŝ |̂, and S, are the sensitivity of the short-,
medium-, and long-term swap rates to the coeffi-
cient P^.
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Since L^ = L̂^ = L, by construction, hedging against
the level factor is equivalent to the duration-neutral con-
dition, and the problem simplifies to

where:

r=

Each month the sensitivities of these swap rates are
calculated to the first and second factors /3Q and j8p and
for each swap butterfly combination the sensitivities to
these beta parameters are derived, according to Martellini,
Priaulet, and Priaulet [2003].

For a Nelson-Siegel-weighted payer swap butterfly,
the total return in basis points is approximated by:'̂

spread performance in basis points, the total return in
basis points divided by the modified duration ofthe body:

Spread performance in bp = [Ar^„ — '/ J

As an illustration, consider a EUR 2-5-7 year com-
bination on June 1, 2004. The coefficient /of this com-
bination is equal to 0.334. The nominal amounts are 783,
1,000, and 499, respectively, on the short, medium, and
long maturities. This has to be compared with a coeffi-
cient /equal to 0.5 for a 50-50 weighting, and weights
equal to 1,171, 1,000, and 375.

Note also that another kind of Nelson-Siegel-
weighted swap butterfly can be designed that is insensi-
tive to changes in the level and curvature factors ^g and
P2, while intentionally exposed to changes in the slope
factor /3j. This can be achieved as before, and we obtain
the same expression for total return and spread perfor-
mance in basis points for this structure, except that we
use a different /given by:

Total return in bp ~

or

Total return in bp ~ D^Ar^

where:

Total return in $
a (4)

+ Carry (5)

Ar̂ j = (swap rate ofthe swap with medium-term maturity
— 1 month at date t + 1 month) — (swap rate ofthe
swap with medium-term maturity at date t).

Equation (5) simplifies into:

Total return in bp = Z)̂ [Ar̂  - 7A/; - (l - 7)A/;] + Carry (6)

Considering a 2/5/30 swap butterfly, Ar̂  would be
the difference between the swap rate of the swap with
maturity 59 months at date t + 1 month and the swap
rate of the swap with maturity 5 years at date t.

As positions are held during a period of one month,
and as we position the same number of butterfly payers
of fixed and butterfly receivers of fixed, which certainly
creates compensation in terms of carry, we consider carry
to be a negligible quantity from now on.

It is common practice in the market to consider the

7 =

where C ,̂ Ĉ^̂ , and Ĉ  are the sensitivity of the short-,
medium-, and long-term swap rates to the coefficient )8,.

Trading Rule

We consider the five standard 2-5-10 year, 2-5-30
year, 2-10-30 year, 5-10-15 year, and 5-10-30 year swap
butterflies. When we bet on a move of j3̂  (fi^ parameter,
we consider the butterfly insensitive to /JQ and ^^ (j3j).
The products have sensitivity to ^^{^2) that is constant
over time. Exhibit 8 displays the sensitivities of these five
butterflies to j3, and ^ j -

When we forecast an increase (dechne) ofthe /3, or
/Jj parameter, we implement the payer (receiver) swap
butterfly if the sensitivity is positive, and the opposite if
the sensitivity is negative. Positions are held during a
period of one month.

Finally, we take into account transaction costs,
assumed to represent 0.5 basis points ofthe spread per-
formance of a butterfly.
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E X H I B I T 8

Sensitivities of Different Swap Butterflies

2/5/10 2/5/30 2/10/30 5/10/15 5/10/30

Sensitivity to jS, -0.6830 0.7210 -0.0772 -0.6415 -0.1110

Sensitivity to ^2 0.1263 0.0608 0.0284 0.1187 0.0568

Results

We use the methodology to implement systematic
trading rules based on the signals generated by the econo-
metric process. The cumulative spread performance of
the five butterflies when betting either on the j8̂  or jSj
parameter is displayed in Exhibits 9 and 10. These results
show that predictabihty in the shape ofthe yield curve is
both statistically and economically significant.

The best results are obtained with the 2-5-10 year,
2-5-30 year, and 2-10-30 year combinations, which exhibit
cumulative spread performance of 278 bp (30 bp), 259 bp
(50 bp), and 245 bp (37 bp) in betting on the ;8, {P^j para-
meter when bets are taken when predicted value is one
standard deviation away fî om the neutral view. These results
suggest that more significant outperformance is obtained
in betting on the slope factor instead ofthe curvature factor.

Interestingly, as can be seen in Exhibits 11 and 12,
when there is more confidence in the prediction (as mea-
sured by the number of standard deviations from the neu-
tral view), the percentage of trades with positive
performance also increases (for example, from 60% to
75% for the 5-10-15 year butterfly as the number of stan-
dard deviations away from the neutral view increases from
zero to two and in betting on j3,; see Exhibit 11). On the
other hand, the cumulative spread is reduced because there
are fewer trades initiated.

Another useful way to illustrate the benefits of such
active strategies is to examine the risk-return patterns they
generate. Exhibits 13 and 14 report standard measures of risk-
adjusted performance (annualized return, annualized
volatility, Sharpe and Sortino ratios, downside deviation)
in the case of a bet on changes in P^ and changes in j8,.
While we have focused on a strategy that generates a trade
even when the predicted probability is arbitrarily close to
the neutral 50% reference, we also tested different levels of
(net) leverage, 2, 4, and 20 (a (net) leverage equal to 4 means
that an initial $100 is invested in cash, while another $200
is invested in a long or short position in the body ofthe but-
terfly, covered by a position short or long in the wings of
the butterfly designed to ensure duration-neutrality).

Exhibit 13 shows spectacular performance of an
active strategy based on bets on the P^ parameter, with
Sharpe ratios close to 2 and Sortino ratios above 3, what-
ever the particular level of leverage. On the other hand,
as could be expected from results reported in Exhibit 12,
bets on the curvature factor do not allow for significant
outperformance {see Exhibit 14).

IV. CONCLUSIONS

We have presented evidence of predictability in the
time-varying shape ofthe U.S. term structure of interest
rates. We fmd we can use variables such as default spread,
equity volatility, and short-term and forward rates, among
others, to predict changes in the slope ofthe yield curve
(and to a lesser extent changes in the curvature of the
yield curve). Systematic trading strategies based on but-
terfly swaps indicate that this evidence of predictabihty
in the shape ofthe yield curve is both economically and
statistically significant enough to be exploited.

E X H I B I T 9

Cumulative Spread Perfonnance of Five Butterflies Betting on

Number of Stand. Dev. away from Neutral View
Number of Bets
Hit Rate

2/5/10

2/5/30
2/10/30
5/10/15
5/10/30

0

43
67%

430bp
375bp
366bp
30bp
59bp

0.5
34

68%

Bets on j

1
27

67%

Cumulative spread

358bp
316bp
307bp
24bp
48bp

265bp
246bp
232bp
15bp
31bp

1.5
14

71%

performance

148bp
145bp
133bp
2bp
15bp

2
9

67%

75bp
72bp
67bp
lbp
8bp
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E X H I B I T 1 0
Cumulative Spread Perfonnance of Five Butterflies Betting on

Number of Stand.

Number of Bets

Hit Rate

Dev. away from Neutral View

2/5/10
2/5/30

2/10/30
5/10/15
5/10/30

0

37
54%

-lObp
-6bp
-9bp

-lObp
-15bp

0.5

26

58%

Cumulative

-3bp
lbp
-6bp

-lObp
-13bp

Bets on

1

16

69%

spread

22bp
42bp
29bp
-2bp
4bp

P2

1.5

9

56%

performance

7bp
17bp
14bp
Obp
4bp

2
7

71%

llbp
28bp
28bp
3bp
12bp

E X H I B I T 1 1
Percentage of Trades with Positive Spread Performance Betting on

Number of Stand.

Number of Bets

Hit Rate

Dev. away from Neutral View

2/5/10
2/5/30

2/10/30
5/10/15
5/10/30

0

43

67%

67%
63%

67%
60%
60%

0.5

34

68%

% of trades

71%
65%

71%
68%
65%

Bets on P^

1

27

67%

with positive spread

70%
67%

70%
67%
63%

1.5

14

71%

performance

71%
64%

71%
64%
64%

2

9
67%

78%
67%
78%
78%
78%

E X H I B I T 1 2
Percentage of Trades with Positive Spread Performance Betting on

Number of Stand.
Number of Bets

Hit Rate

Dev. Away from Neutral View

2/5/10
2/5/30

2/10/30
5/10/15
5/10/30

0

37
54%

49%
49%

49%
46%
46%

0.5

26

58%

Bets on P2

1

16

69%

% of trades with positive spread

50%

50%
50%

38%
46%

56%

56%

56%
44%
50%

1.5

9

56%

performance

56%
56%
56%

56%
56%

2

7
71%

71%

71%
71%
57%
71%
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E X H I B I T 1 3
Risk-Return Profile of Active Strategies Based on Bet on

Leverage 2

Annual Return
Annual Volatility
Sharpe Ratio

Downside Dev
Sortino Ratio

Leverage 4

Annual Return

Annual Volatility
Sharpe Ratio

Downside Dev

Sortino Ratio

Leverage 20

Annual Return

Annual Volatility
Sharpe Ratio
Downside Dev.
Sortino Ratio

Cash

3.04%

0.56%

Cash

3.04%

0.56%

Cash

3.04%

0.56%

2y-5y-30y

9.23%
3.68%

1.7
2.01%

3.1

2y-5y-30y

14.75%
7.17%

1.6
3.86%

3.0

2y-5y-30y

58.92%
35.31%

1.6
18.76%

3.0

2y-5y-10y

9.89%
3.70%

1.8
1.80%

3.8

2y-5y-10y

16.06%
7.23%

1.8
3.48%

3.7

2y-5y-10y

65.46%
35.61%

1.8
17.04%

3.7

5y-10y-15y

4.47%
1.07%

1.3
0.60%

2.4

5y-IOy-15y

5.23%

1.80%
1.2

0.99%
2.2

5y-10y-l5y

11.31%
8.23%

1.0
4.61%

1.8

2y-10y-30y

13.17%
5.82%

1.7
2.98%

3.4

2y-IOy-3Oy

22.63%
11.50%

1.7
5.83%

3.4

2y-10y-30y

98.29%
57.00%

1.7
28.75%

3.3

5y-10y-30y

5.16%
1.32%

1.6
0.64%

3.3

5y-IOy-3Oy

6.60%
2.36%

1.5
1.12%

3.2

5y-10y-30y

18.17%
11.10%

1.4
5.34%

2.8

E X H I B I T 1 4
Risk-Return Profile of Active Strategies Based on Bet on

Leverage 2

Annual Return

Annual Volatility
Sharpe Ratio

Downside Dev.
Sortino Ratio

Cash

3.04%

0.56%

2y-5y-30y

2.97%
1.43%

-0.05
1.18%

-0.06

2y-5y-IOy

2.90%
0.97%

-0.15
0.87%

-0.17

5y-10y-15y

2.78%
0.66%

-0.40
0.62%

-0.42

2y-IOy-3Oy

2.82%
2.02%

-0.11
1.54%

-0.14

5y-IOy-3Oy

2.65%
1.09%

-0.35
0.90%

-0.43

Leverage 4 Ca.sh 2y-5y-30y 2y-5y-IOy 5y-10y-15y 2y-IOy-3Oy 5y-10y-30y

Annual Return

Annual Volatility
Sharpe Ratio
Downside Dev.
Sortino Ratio

Leverage 20

Annual Return

Annual Volatility
Sharpe Ratio
Downside Dev.
Sortino Ratio

3.04%

0.56%

Cash

3.04%

0.56%

2.91%
2.69%

-0.05
2.07%

-0.06

2y-5y-30y

3.13%
13.45%
0.01
9.32%
0.01

2.76%
1.67%

-0.17
1.41%

-0.20

2y-5y-IOy

1.86%
8.00%

-0.15
5.94%

-0.20

2.51%
1.07%

-0.49
0.93%

-0.57

5y-10y-15y

0.45%
5.67%

-0.46
4.24%

-0.61

2.64%
3.95%

-0.10
2.84%

-0.14

2y-l0y-30y

2.76%
21.06%
-0.01
13.89%
-0.02

2.27%
1.99%

-0.38
1.55%

-0.50

5y-10y-30y

-0.56%
10.38%
-0.35
7.34%

-0.49
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ENDNOTES

The authors thank Ludovic Breger, Mehdi Chaabouni,
Oren Cheyette, Martijn Cremers, and Wesley Phoa for helpful
cofnments and suggestions and Luc Hazoume for help with the
numerical tests. The views expressed here are those of the
authors themselves and should in no way be attributed to their
employers.

'See also DufFee [2002] for an attempt to generate fore-
casts of future changes in the level of interest rates using stan-
dard afFitie term structure models.

^See Martellini and Priaulet [2000] for details.
•'While the Nelson-Siegel model is based on constant para-

meters, we use a rolling window analysis to fit the model and
extract a dynamic view of term structure deformations. Such a
procedure, while formally inconsistent, is widely used in practice,
and is sitiiilar to an estimate ofthe time series ofitnplied volatility
frotn the Black-Scholes model of option prices, even though the
model is based on the assumption of a constant volatility.

•'Following common practice, we hold T constant in the
analysis (see Barrett, Gosnell, and Heuson [1995] and Willner
[1996]). We could, of course, take it as an additional variable,
but by opting for such a solution, we might create instability
in the beta parameters.

'Because we subsequently focus on swap butterflies, as
opposed to bond butterflies, we model swap rates instead of
zero-coupon yields like Nelson and Siegel [1987].

•"Hit rate is defmed as the percentage of tirnes the cor-
rect sign of changes in the parameter is predicted.

'Given that market participants use forward rates as an
indication of investor expectations concerning future move-
ments ofthe short-term rate, a model's atnbition should be not
only to predict fijture changes in interest rate level, slope, or cur-
vature, but also to outperform predictions of simple models
based on forward rates only.

*This is a priori better than including a tneasure of infla-
tion, which is by construction a backward-looking estimate.

'•'As an alternative, Cremers [2002] suggests using eco-
nomically meaningful prior information such as some prior
sense ofthe R^ ofthe predictive regression and variance ofthe
residuals and number of predictors. While intuitively appealing,
this methodology results in priors for model parameters that
are relatively flat, so that posterior estimates will be dominated
by sample data as in the simpler procedure that we follow.

" ^ e also check to ensure multicollinearity is not an issue,
as the maximutn correlation between two variables does not
exceed 60% in the sample.

"In the U.K., the receiver swap butterfly is called a barbell.
'̂ Bond butterflies actually come in different forms: 50/50,

maturity weighting, minimum variance weighting, regression
weighting, PCA weighting, and Nelson-Siegel weighting.

'•̂ To be more precise, we would have to incorporate the
convexity term, which is omitted here as positions are carried

out over a period of one month, and small changes in yields
are assumed.
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