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Part |
UNIVARIATE TIME SERIES






1 Notation, Definitions and Basic
Inference

Problem Areas, Graphical Displays and Objectives

1.1  The expressionime series dataor time series usually refers to a set of
observations collected sequentially in time. These olasiems could have been
collected at equally-spaced time points. In this case wethuisaotationy; with
(t=...,—-1,0,1,2,...), i.e.,, the set of observations is indexed iyhe time at
which each observation was taken. If the observations wete¢aken at equally-
spaced points then we use the notatipn with ¢ = 1,2, ..., and so,(¢; — t;—1) is
not necessarily equal to one.

A time series process a stochastic process or a collection of random variables
y¢ indexed in time. Note that, will be used throughout the book to denote a random
variable or an actual realisation of the time series proe¢danet. We use the
notation{y;,t € 7T}, or simply {y:}, to refer to the time series process.7Ifis of
the form{¢;,7 € N}, then the process is a discrete-time random process and if
is an interval in the real line, or a collection of intervatsthe real line, then the
process is a continuous-time random process. In this framew time series data
sety, (t = 1,...,n), also denoted by.,, is just a collection of. equally-spaced
realisations of some time series process.

In many statistical models the assumption that the obdenstre realisations
of independent random variables is key. In contrast, timeseanalysis is con-
cerned with describing the dependence among the elemeatsegfuence of random
variables.

At each timet, y, can be a scalar quantity, such as the total amount of rainfall
collected at a certain location in a given dyor it can be a-dimensional vector
collectingk scalar quantities that were recorded simultaneously. istaince, if the
total amount of rainfall and the average temperature atendication are measured
in dayt, we havek = 2 scalar quantitieg; ; andy,; and so, at time we have
a 2-dimensional vector of observations= (y1.,y2,)’. In general, fork scalar
quantities recorded simultaneously at timeve have a realisatiog, of a vector
processy,,t € T}, withy, = (Y14, -, Yr,t)'
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Fig. 1.1 EEG series (units in millivolts)

1.2  Figure 1.1 displays a portion of a human electroencephaiogir EEG,
recorded on a patient’s scalp under certain electrocoiveutBerapy (ECT) condi-
tions. ECT is an effective treatment for patients under majimical depression
(Krystal et al,, 1999). When ECT is applied to a patient, seizure activiyesps
and can be recorded via electroencephalograms. The serresgonds to one of
19 EEG channels recorded simultaneously at differentiocatover the scalp. The
main objective in analysing this signal is the charactéinsaof the clinical effi-
cacy of ECT in terms of particular features that can be ieféfrom the recorded
EEG traces. The data are fluctuations in electrical potetaien at time inter-
vals of roughly one fortieth of a second (more precisely 25§.HFor a more
detailed description of these data and a full statisticalysis see Wesgdt al. (1999);
Krystaletal. (1999) and Pradet al. (2001). From the time series analysis viewpoint,
the objective here is modelling the data in order to provideful insight into the
underlying processes driving the multiple series duringiase episode. Studying
the differences and commonalities among the 19 EEG chaisraiso key. Univari-
ate time series models for each individual EEG series colleidplored and used to
investigate relationships across the 19 channels. Muliteatime series analyses —
in which the observed serigg,, is a 19-dimensional vector whose elements are the
observed voltage levels measured simultaneously at thedlp kcations at each
timet — can also be considered.
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Fig. 1.2 Sections of the EEG trace displayed in Figure 1.1.

These EEG series display a quasi-periodic behaviour trzatggs dynamically in
time, as shown in Figure 1.2, where different portions of BtG trace shown in
Figure 1.1 are displayed. In particular, it is clear thattblatively high frequency
components that appear initially are slowly decreasingtdathe end of the series.
Any time series model used to describe these data shouldiritk@ccount their
non-stationary and quasi-periodic structure. We discas®ws modelling alterna-
tives for these data in the subsequent chapters, includimglass of time-varying
autoregressions or TVAR models and other multi-channeletsod

1.3  Figure 1.3 shows the annual per capita GDP (gross domesitittipt) time
series for Austria, Canada, France, Germany, Greece, 8algden, UK and USA
during 1950 and 1983. Interest lies in the study of “peribdhehaviour of such
series in connection with understanding business cycléser@oals of the analysis
include forecasting turning points and comparing charésties of the series across
the national economies.

One of the main differences between any time series analysiee GDP series
and any time series analysis of the EEG series, regardl¢iss bfpe of models used
in such analyses, lies in the objectives. One of the goalsatyaing the GDP data is
forecasting future outcomes of the series for the severaltcies given the observed
values. In the EEG study there is no interest in forecastirigré values of the
series given the observed traces, instead the objectiveliadj an appropriate model
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Fig. 1.3 International annual GDP time series

that determines the structure of the series and its latanpoaents. Univariate and
multivariate analyses of the GDP data can be considered.

1.4  Other objectives of time series analysis include monigpartime series in
order to detect possible “on-line” changes. This is imparfar control purposes in
engineering, industrial and medical applications. Fotanse, consider a time series
generated from the proce§g, } with

09y +€Y, ya>15 (M)

Yt = (2) (1.1)
—03y:—1 +e, y1 < —15 (Ma),

wheree!”) ~ N(0,v1), €? ~ N(0,v) andv; = vy, = 1. Figure 1.4 (a) shows a
time series plot of 1,500 observations simulated accorting.1). Figure 1.4 (b)
displays the values of an indicator variabig,such thav; = 1 if y; was generated
from M, andé; = 2 if y, was generated from/,. The model (1.1) belongs to the
class of so called threshold autoregressive (TAR) modeisally developed by H.

Tong (Tong, 1983; Tong, 1990). In particular, (1.1) is a TABdal with two regimes,
and so, it can be written in the following, more general, form

) oWy +€£1)7 0+yi—a>0 (M) (1.2)
SR EC 2 g <0 (M '
PPy +e, O+yia <0 (M),

with e ~ N(0,v1) andel? ~ N(0,v5). These are non-linear models and the
interest lies in making inference abaijt and the parameters? , ¢(2) v; anduv..
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Fig. 1.4 (a): Simulated time serigg; (b) Indicator variable); such that; = 1 if y; was a
sampled fromM/; andd; = 2 if y; was sampled frond/5.

Model (1.2) serves the purpose of illustrating, at leastdarery simple case,
a situation that arises in many engineering applicationgiqularly in the area of
control theory. From a control theory viewpoint we can thofkmodel (1.2) as a
bimodal process in which two scenarios of operation are lednily two control
modes (/; andMs). In each mode the evolution is governed by a stochastiegc
Autoregressions of order one, or AR(1) models (a formal defim of this type
of processes is given later in this chapter), were chosehisneixample, but more
sophisticated structures can be considered. The tramsitietween the modes occur
when the series crosses a specific threshold and so, we kabtait an internally-
triggered mode switch. In an externally-triggered moddawihe moves are defined
by external variables.

In terms of the goals of a time series analysis we can conswierpossible
scenarios. In many control settings where the transiti@t&é&en modes occur in
response to controller’s actions, the current state isyadvkamown. In this setting
we can split the learning process in two: learning the stsiibanodels that control
each mode conditional on the fact that we know in which modangei.e., inferring
»W, ¢ vy andvs, and learning the transition rule, that is, making infees@bout
d and# assuming we know the valués.,,. In other control settings, where the
mode transitions do not occur in response to the contrelégtions, it is necessary to
simultaneously infer the parameters associated to theastic models that describe
each mode and the transition rule. In this case we want tmasip(!) | (2 vy, vs, 0
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andd conditioning only on the observed data,,. Depending on the application it
may also be necessary to do the learning from the time serpgestially in time
(see Chapter 5).

1.5 Finally, we may use time series techniques to model seripkngences
between parameters of a given model with additional strectéor example, we
could have a linear regression model of the fagm= 5y + B1z: + €, for whiche;
does not exhibit the usual independent structyre N (0, v) for all ¢ but instead,
the probability distribution o¢; dependsom;_1, ..., ¢ k.

Stochastic Processes and Stationarity

Many time series models are based on the assumption ofrsstyp Intuitively,
a stationary time series process is a process whose behakies not depend on
when we start to observe it. In other words, different sectiof the series will look
roughly the same at intervals of the same length. Here weigdwo widely used
definitions of stationarity.

1.6  Atime series procesgy:,t € 7} is completelyor strongly stationaryf, for
any sequence of times, to, ..., t,, and any lagk, the probability distribution of
(yty,-- -,y ) is identical to the probability distribution @, &, - - ., Yt +x)"

1.7 Inpracticeitis very difficult to verify that a process is@tgly stationary and
so, the notion ofveakor second order stationaritgrises. A process is said to be
weakly stationary, or second order stationary if, for argussce of times;, . . ., ¢,
and any lagk, all the first and second joint moments(at,, . .., v:, )’ exist and are
equal to the first and second joint moment$wf . «, ..., v, +x)". If {y:} is second
order stationary we have that

E(yt) = M Var(yt) =, Cov(yta ys) = 7(5 - t)a (13)

wherep, v are constant, independentiofnd~(s — t) is also independent a@fand
s, since it only depends on the length of the interval betweae points. It is also
possible to define stationarity up to orderin terms of then joint moments, see for
example Priestley (1994).

If the first two moments exist, complete stationarity implgecond order sta-
tionarity, but the converse is not necessarily true.{yJf} is a Gaussian process,
i.e., if for any sequence of time points . .., t,, the vector(y;,, ...,y )’ follows a
multivariate normal distribution, strong and weak stadigty are equivalent.
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Exploratory Analysis: Auto-Correlation and Cross-Correl ation

The first step in any statistical analysis usually consistperforming a descriptive
study of the data in order to summarise their main charatiefieatures. One of
the most widely used descriptive techniques in time seréta dnalysis is that of
exploring the correlation patterns displayed by a seriesa oouple of series, at
different time points. This is done by plotting the sampl&atprrelation and cross-
correlation values, which are estimates of the auto-caticel and cross-correlation
functions.

1.8  We begin by defining the concepts of auto-covariance, aotrektion and
cross-correlation functions. We then show how to estintedsd functions from data.
Let {y:,t € T} be a time series process. The auto-covariance functidp.gfis
defined as follows

V(s,t) = Cov{ys, ys} = E{(ye — pe)(ys — ps)} (1.4)

for all s,t, with u; = E(y:). For stationary processes = p for all ¢t and the
covariance function depends ¢s1— ¢| only. In this case we can write the auto-
covariance as a function of a particular time lag

v(k) = Cov{ys, yi—k}- (1.5)

The auto-correlation function (ACF) is then given by

v(s,1)
pls,t) = ———2—. (1.6)
V(s s)(tt)
For stationary processes, the ACF can be written in termdaif &
(k)
k)= —=. 1.7
p(k) ) 1.7)

The auto-correlation function inherits the propertiesmf aorrelation function. In
this particular case the ACF is a measure of the linear deperadbetween a value
of the time series process at timand past or future values of such procegék)
always takes values in the internjall, 1]. In addition,p(k) = p(—k) and ify, and
y+—k are independent(k) = 0.

It is also possible to define the cross-covariance and @osslation functions
of two univariate time series. Ky} and{z:} are two time series processes, the
cross-covariance is defined as

Vyz (8, 1) = E{(ys — py, ) (25 — prz.)}, (1.8)
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for all s, ¢t and the cross-correlation is then given by

_ 7y,2(57 t)
pus(ont) = = (1.9)

If both processes are stationary we can again write the -cms&iance and cross-
correlation functions in terms of a lag valée This is

Vy,2 (k) = E{(ye — poy) (26— — 1)}, (1.10)
and
(k)
Py,=(k) = T 00 (1.11)

Example 1.8.1 White Noise.

Consider a time series process suchthat N (0, v) forall ¢. In this casey(0) = v,
v(k) =0forall k # 0, p(0) = 1 andp(k) = 0 for all k # 0.

Example 1.8.2 First order autoregression or AR).

In Chapter 2 we formally define and study the properties obgarautoregressions
of orderp, or AR(p) processes. Here, we illustrate some properties of the estpl
AR process, the AR). Consider a time series process such that ¢y;_1 + €
with ¢, ~ N(0,v) for all t. It is possible to show thaf(k) = ¢/¥I~(0) for k =
0,£1,%£2,..., with ¥(0) = 7%y, andp(k) = @lFl for k = 0,41, 42, ... Figure
1.5 displays the auto-correlation functions for AR(1) meses with parameters
¢ =10.9,¢=-0.9and¢ = 0.3, for lag valued), 1, ..., 50. For negative values of
¢ the ACF has an oscillatory behaviour. In addition, the rdtdexay of the ACF is

a function of¢. The closel¢| gets to the unity the lower the rate of decay is (e.g.,
compare the ACFs fop = 0.9 and¢ = 0.3). It is also obvious from the form of
the ACF that this is an explosive function whgfj > 1 and is equal to unity for
all k when¢ = 1. This is related to the characterisation of stationaritAR(1)
processes. An AR(1) process is stationary if and onlyjf< 1. The stationary
condition can also be written as a function of the charastierfoot of the process.
An AR(1) is stationary if and only if the root of the characteristidypmmialu, such
that®(u) = 0, with ®(u) = 1 — ¢u, lies outside the unit circle, and this happens if
and only if|¢| < 1.

1.9  We now show how to estimate the auto-covariance, autodedioe, cross-
covariance and cross-correlation functions from data. ufksswe have datg,.,,.
The usual estimate of the auto-covariance function is thepsa auto-covariance,
which, fork > 0, is given by

S|

n—k
k) == (e = 0) Werk — 1), (1.12)
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Fig. 1.5 Auto-correlation functions for AR processes with paranme®9, -0.9 and 0.3

wherey = 3"}, y:/n is the sample mean. We can then obtain the estimates of the
auto-correlation function g&(k) = % fork=0,1,...

Similarly, estimates of the cross-covariance and croseeladion functions can
be obtained. The sample cross-covariance is given by

k
(Yt — U) (24 — 2), (1.13)

n

S|

’Asz(k) =
t

and so, the sample cross-correlation is obtaingg ask) = 4, .(k)/+/%y(0)3:(0).

Figure 1.6 displays the sample auto-correlation functiohsimulated AR(1)
processes with parameteps= 0.9, ¢ = —0.9 and¢ = 0.3, respectively. The
sample ACFs were computed based on a sample ef 200 data points. For
¢ = 0.9 and¢ = 0.3 the corresponding sample ACFs decay as a function of the lag.
The oscillatory form of the ACF for the process with= —0.9 is captured by the
corresponding sample ACF.

The estimates given in (1.12) and (1.13) are not unbiaséuatsts of the auto-
covariance and cross-covariance functions. For resuliteckto the sample distri-
bution of the sample auto-correlation and sample crossladion functions see for
example Shumway and Stoffer (2000).

Il
—
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Fig. 1.6 Sample auto-correlation functions for AR processes wittapeters 0.9, -0.9 and
0.3 (graphs (a), (b) and (c), respectively)

Exploratory Analysis: Smoothing and Differencing

As mentioned before, many time series models are built utidestationarity as-
sumption. Several descriptive techniques have been des@to study the stationary
properties of a time series so that an appropriate modeltemtie applied to the
data. For instance, looking at the sample auto-correl&tioction may be helpful in
identifying some features of the data. However, in manytjrakscenarios the data
are realisations from one or several non-stationary peasesin this case, methods
that aim to eliminate the non-stationary components aenafised. The idea is to
separate the non-stationary components from the stajianses so that the later
can be carefully studied via traditional time series modatsh as, for example, the
ARMA (autoregressive-moving-average) models that widllseussed in subsequent
chapters.

In this Section we enumerate some commonly used methodstfacéng the non-
stationary components of atime series. We do not attempbtoge a comprehensive
list of methods, since this would be a nearly impossible tasfond the scope of this
book. Instead, we just list and summarise a few of them. We these techniques
as purely descriptive. We believe that if the data display-stationary components,
such components should be explicitly included in any prepdanodel.

Several descriptive time series methods are based on thenradt smoothing
the data, this is, decomposing the series as a sum of two coenpm a so called
“smooth” component, plus another componentthat inclulléssefeatures of the data



EXPLORATORY ANALYSIS: SMOOTHING AND DIFFERENCING 13

that are left unexplained by the smooth component. Thisndai to the “signal plus
noise” concept used in signal processing. The main difftauith this approach lies
in deciding which features of the data are part of the signi@smooth component
and which ones are part of the noise.

1.10 One way to do smoothing is via moving averages (see Keetlall, 1983;
Kendall and Ord, 1990; Chatfield, 1996 and Diggle, 1990 faaitked discussions
and examples). If we have daja,,, we can smooth them by applying an operation
of the form

p
2t = Z%}%-&-ja t=¢+1,....n—p, (114)

Jj=—q

where theq;’s are weights such thaE’.’}q a; = 1. Itis generally assumed that
p =g, a; > 0forall j anda; = a_;. The order of the moving average in this case
is 2p + 1. The first question that arises when applying a moving awetag series
is how to choose and the weights. The simplest alternative is choosing a lmiwes
of p and equal weights. The higher the valueppthe smoothet; is going to be.
Other alternatives include successively applying a simpuiging average with equal
weights or choosing the weights in such a way that a partidakgture of the data
is highlighted. So, for example, if a given time series releakr monthly displays a
trend plus a yearly cycle, choosing a moving average with6, ag = a_¢ = 1/24
anda; = 1/12 for j = 0,=£1,...,£5 would diminish the impact of the periodic
component and therefore, emphasising the trend (see D@AO for an example).

Figure 1.7 (a) shows monthly values of the Souther Osaltatndex (SOI) during
1950-1995. This series consists of 540 observations of @l @&mputed as the
difference of the departure from the long-term monthly meaa level pressures
at Tahiti in the South Pacific and Darwin in Northern Austali The index is
one measure of the so called "ElIffd-Southern Oscillation" — an event of critical
importance and interest in climatological studies in réaetades. The fact that
most of the observations in the last part of the series tagative values is related
to a recent warming in the tropical Pacific. A key questiomtéiest is to determine
just how unusual this event is, and if it can reasonably bdagxgd by standard
"stationary" time series models, or requires models thelude drifts/trends that
may be related to global climatic change. Figures 1.7 (bXephshow two smoothed
series obtained via moving averages of orders 3 and 9, ridaglgc with equal
weights. As explained before, we can see that the higherrther @f the moving
average the smoother is the resulting series.

1.11  Other ways to smooth a time series include fitting a linearaggjon to

remove a trend or, more generally, fitting a polynomial regien; fitting a harmonic
regression to remove periodic components and performirrggkemoothing or spline
smoothing.
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Fig. 1.7 (a): Southern oscillation index (SOI) time series; (b): $thed series obtained
using a moving average of order 3 with equal weights; (c): &med series obtained using a
moving average of order 9 with equal weights

Smoothing by polynomial regression consists on fitting gpoimial to the series.
In other words, we want to estimate the parameters of the mode

yr = Bo + Bit + ...+ Bpt? + ¢,

wheree; is usually assumed as a sequence of zero mean, independesgi&ia
random variables. Similarly, fitting harmonic regressipnsvides a way to remove
cycles from a time series. So, if we want to remove periodimponents with

frequenciesv, . .., w,, we need to estimaie,, b1, . . ., ap, b, in the model

ye = aqcos(2rwit) + by sin(2mwit) + ... +

ap cos(2mwpt) + by, cos(2mwpt) + €.

In both cases the smoothed series would then be obtained asy; — g, with
9 = Po+ Bt + ... + Bpt?, and gy = a1 cos(2mwqt) + by sin(2rwnt) + ... +
i, cos(2mwyt) 4 b, cos(2mw,t), respectively, wherg;, a; andb, are point estimates
of the parameters. Usual& anda;, b; are obtained by least squares estimation.
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In kernel smoothing a smoothed versigrof the original serieg; is obtained as
follows

= w5 (S 13w (52).

where K (-) is a kernel function, such as a normal kernel. The paranietera
bandwidth. The larger the value &fthe smootheg; is.

Cubic splines and smoothing splines are also commonly usedthing tech-
nigues. See Shumway and Stoffer (2000) for details andr#itisns on kernel and
spline smoothing.

1.12  Anotherway to smooth atime series is by taking its diffeemndifferencing
provides a way to remove trends. The first difference of @sgyiis defined in terms
of an operatorD that produces the transformatidn; = y, — y;—1. Higher order
differences are defined by successively applying the opefat Differences can
also be defined in terms of the back shift operayrwith By, = y;—1 and so,
Dy, = (1 — B)y;. Higher order differences can be written@8y; = (1 — B)%y;.

1.13 Inconnection with the methods presented in this Secti@wibrth mention-
ing that wavelet decompositions have been widely used ientegears for smooth-
ing time series. Vidakovic (1999) presents a statisticgragch to modelling by
wavelets. Wavelets are bases functions that are used tesegrother functions.
They are the analogous to the sines and cosines in the Ftranieformation. One of
the advantages of using wavelets basis, as opposed to F@piesentations, is that
they are localised in frequency and time, and so, they atatdaifor dealing with
non-stationary signals that display jumps and other aloighges.

A Primer on Likelihood and Bayesian Inference

Assume that we have collectedobservationsy; .,,, of a scalar quantity over time.
Suppose that for each observatignwe have a probability distribution that can be
written as a function of some parameter, or collection obpaaters, namelg, in
such a way that the dependenceypfon 6 is described in terms of a probability
density functionp(y,|0). If we think of p(y.|0) as a function 0, rather than a
function ofy;, we refer to it as the likelihood function. Using Bayes’ the it

is possible to obtain the posterior density functionfodiven the observation;,,
p(Bly:), as the product of the likelihood and the prior dengit§), i.e.,

p(0)p(v:]6)

p(Oly:) = o

: (1.15)
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with p(y:) = [ p(0)p(y|0)d6. p(y.) defines the so called predictive density func-
tion. The prior distribution offers a way to incorporate quior beliefs abou® and
Bayes’ theorem provides the way to update such beliefs aftgerving the data.

Bayes’ theorem can also be used in a sequential way. So.ebedtiecting any
data, the prior beliefs abo@tare expressed in a probabilistic form yigd). Assume
that we then collect our first observation attitre 1, y;, and we obtaip(6|y1) using
Bayes'’ theorem. Oncg: is observed we can obtajirif|y1.2) using Bayes’ theorem
asp(0|y1.2) x p(0)p(y1.2|0). Now, if y; andy, are conditionally independent éh
we can writep(0|y1.2) x p(0ly1)p(y=20), i.e., the posterior of giveny; becomes
a prior distribution before observing,. Similarly, p(6|y:1.,) can be obtained in
a sequential way, if all the observations are independeiwerter, in time series
analysis the observations are not independent. For examplEmmon assumption
is that each observation at timeepends only oA and the observation taken at time
t — 1. In this case we have

p(Bly1:n) < p(O)p(y116) [ [ p(velye-1,6). (1.16)

t=2

General models in whicly; depends on an arbitrary number of past observations
will be studied in subsequent chapters. We now consider ampbe in which the
posterior distribution has the form (1.16).

Example 1.13.1The AR1) model.

We consider again the AR) process. The model parameters in this case are given by
6 = (¢,v)". Now, for each time > 1, the conditional likelihood i®(y:|y:—1,0) =

N (y¢|py:—1,v). In addition, it can be shown that ~ N(0,v/(1 — ¢?)) (see
Problem (1) in Chapter 2) and so, the likelihood in this case i

(1—¢*)'/2 Q*(¢)
P(Y1:n]0) = WGXP{ 7 }, (1.17)
with
Q*(¢) =yi(1— ") + > (v — dwu—1)*. (1.18)
t=2

The posterior density is obtained via Bayes’ rule and so

- (-2,

(2mv)n/2 o 20

p(0ly1n) o< p(0)

We can also use the conditional likelihop@2., |0, y1) as an approximation to the
likelihood (see Boxet al,, 1994 A7.4 for a justification), which leads to the following
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posterior density

p(Oly1n) o p(O)v(”l)/Qexp{—§(¢> }, (1.19)
v
with Q(¢) = > 1o (y+ — ¢y:—1)?. Several choices qgf(8) can be considered and
will be discussed later. In particular, it is common to assuprior structure such

thatp(8) = p(v)p(¢|v), orp(8) = p(v)p().

Another important class of time series models is one in wipialemeters are
indexed in time. In this case each observation is relatedparameter, or a set of
parameters, saf;, that evolves over time. The so called class of Dynamic Ltinea
Models (DLMs) considered in Chapter 4 deals with models &f thpe. In this
framework it is necessary to define a process that deschies/blution ofg; over
time. As an example, consider the time-varying AR model déopne, or TVAR1),
given by

Yr = OYi-1+ €,
¢t = -1+,

with ¢; andv, independent in time and mutually independent and witk N (0, v)
andy; ~ N(0,w). Some distributions of interest are the posteriors at time
p(é¢|y1.¢) andp(v|yi.¢), the filtering or smoothing distributionsg ¢ |y:.»), and the
m-steps ahead forecast distributipfy;.|y1.+). Details on how to find these
distributions for rather general DLMs are given in Chapter 4

1.14 ML, MAP and LS estimation. It is possible to obtain point estimates of
the model parameters by maximising the likelihood functiorthe full posterior
distribution. A variety of methods and algorithms have bdeweloped to achieve
this goal. We briefly discuss some of these methods. In adfgite illustrate how
these methods work in the simple AR case.

A point estimate of, 6, can be obtained by maximising the likelihood function
p(y1.n|0) with respect td. In this case we use the notatién= OpmL - Similarly, if
instead of maximising the likelihood function we maximike posterior distribution
p(8y1.), we obtain the maximum a posteriori estimateo = 6y ap-

Usually, the likelihood function and the posterior distition are complicated
non-linear functions ofl and so, it is necessary to use methods such as the Newton-
Raphson algorithm or the scoring method to obtain the mamitikelihood estimator
(MLE) or the maximum a posteriori (MAP) estimator. In geriethe Newton-
Raphson algorithm can be summarised as follows. d(ét be the function of
6 = (64, ...,0;) that we want to maximise artibe the maximum. At iteratiom
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of the Newton-Raphson algorithm we obt&ifi"), an approximation té, as follows

0('m) _ O(m—l) o |:g//(0('m—1)>:| -1 « |:g/(0(m—1)):| ’ (120)
whereg’(0) andg”(6) denote the first and second order partial derivatives of the
!
functiong, i.e. ¢’(0) is ak-dimensional vectoy’(0) = é’zé?),..., agég)) , and
g"(0) is ak x k matrix of second order partial derivatives whag¢h element is given
by [ggZém ,fori,j =1,..., k. Under certain conditions this algorithm produces a
sequenc®™ 6 .. thatwill convergetd. In particular, it is important to begin

with a good starting valug'?), since the algorithm does not necessarily converge for
values in regions where ¢”(-) is not positive definite. An alternative method is the
scoring method, which involves replacigl(€) in (1.20) by the matrix of expected
valuesE(g"(0)).

In many practical scenarios, specially when dealing witldeis that have very
many parameters, it is not useful to summarise the infegeimceerms of the joint
posterior mode. In such cases it is often interesting andogpiate to summarise
posterior inference in terms of the marginal posterior nsodleis is, the posterior
modes for subsets of model parameters. Let us say that weacttiom our model
parameters in two set§, and@, so thatd = (07,0,) and assume we are inter-
ested inp(62]y1.,). The EM (Expectation-Maximisation) algorithm proposed in
Dempsteret al. (1977) is useful when dealing with models for whigf®|y1.,,) is
hard to maximise directly but it is relatively easy to workthwi (6|02, y1.,) and
(02101, y1.,). The EM algorithm can be described as follows

1. Start with some initial valuégo).

2. Fori=1,2,...
e ComputeE Y (log p(81, 02|y1.)] given by the expression

/ 1og p(01, 02[y1:)p(01105 ), y1.,)d6:. (1.21)

This is the E-step.
° Seteéi) to the value that maximises (1.21). This is the M-step.

Ateach iteration of the EM algorithp(62|y: ., ) should increase and so, the algorithm
should converge to the mode. Some extensions of the EM #igoiinclude the
ECM (expectation-conditional-maximisation) algorittBGME (variant of the ECM

in which either the log-posterior density or the expectegtposterior density is
maximised) and SEM (sumplemented EM) algorithms (see QGeknhal,, 2004 and
references therein) and stochastic versions of the EM ithgoisuch as the MCEM
(Wei and Tanner, 1990).
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Fig. 1.8 Conditional and unconditional likelihoods (solid and @dtiines respectively) for
100 simulated observations

Example 1.14.1 ML, MAP and LS estimators for the AR(1) model.

Consider an AR(1) such that = ¢y:—1 + €, with ez ~ N(0,1). In this case
v = 1 andf = ¢. The conditional MLE is found by maximising the func-
tion exp{ — %} or equivalently, by minimising9(¢). Therefore, we obtain
=ML = o1/ 1,y 1. Similarly, the MLE for the unconditional
likelihood function is obtained by maximisingy:..|¢), or equivalently, by min-
imising the expression

—0.5[log(1 — ¢%) + Q* (o).

Thus, the Newton-Raphson or scoring methods can be useditg. fis an illustra-
tion, the conditional and unconditional ML estimators wirend for 100 samples
from an AR(1) with ¢ = 0.9. Figure 1.8 shows a graph with the conditional and un-
conditional log-likelihood functions (solid and dotteddis respectively). The points
correspond to the maximum likelihood estimators with- 0.9069 and¢$ = 0.8979
being the MLEs for the conditional and unconditional likelods, respectively. For
the unconditional case, a Newton-Raphson algorithm wasstadind the maximum.
The algorithm converged after 5 iterations with a startiatyie of 0.1.

Figure 1.9 shows the form of the log-posterior distributidnp under Gaussian
priors of the form¢ ~ N (u, c), for u = 0, ¢ = 1.0 (left panel) and: = 0.01 (right
panel). Note that this prior does not impose any restrictiop and so, it gives
non-negative probability to values gfthat lie in the non-stationary region. It is
possible to choose priors ahwhose support is the stationary region. This will be
considered in Chapter 2. Figure 1.9 illustrates the efféthe prior on the MAP
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Fig. 1.9 Conditional and unconditional posteriors (solid and dbtiees respectively) with
priors of the form¢ ~ N (0, ¢), for ¢ = 1 (left panel) and: = 0.01 (right panel).

estimators. For a priop ~ N(0,1), the MAP estimators arepap = 0.9051
andgpap = 0.8963 for the conditional and unconditional likelihoods, resipedy.
When a smaller value efis considered, or in other words, when the prior distributio
is more concentrated around zero, then the MAP estimatésteivards the prior
mean. For a priop ~ N(0,0.01), the MAP estimators argyjap = 0.7588 and
omap = 0.7550 for the conditional and unconditional likelihoods, resipedy.
Again, the MAP estimators for the unconditional likelih@odere found using a
Newton-Raphson algorithm.

It would have also been possible to obtain the least squaténators for the
conditional and unconditional likelihoods. For the coiafitl case, the least squares
estimator, or LSE, is obtained by minimising the conditiosiam of square€)(¢),
and so, in this case); g = ¢ sg- In the unconditional case the LSE is found by
minimising the unconditional sum of squar@$(¢) and so, the LSE and the MLE
do not coincide.

1.15 Traditional Least Squares. Likelihood and Bayesian methods for fitting
linear autoregressions rely on very standard methods eéfinegression analysis
therefore, some review of the central ideas and resultsgiression is in order and
given here. This introduces notation and terminology thiltbve used throughout
the book.

A linear model with a univariate response variable and 0 regressor variables
(otherwise predictors or covariates) has the form

yi =B +e



A PRIMER ON LIKELIHOOD AND BAYESIAN INFERENCE 21

fori = 1,2,..., wherey; is thei*" observation on the response variable, and has
corresponding values of the regressors in the design vécter (fi1,..., fip)'

The design vectors are assumed known and fixed prior to dhgetorresponding
responses. The error terrasare assumed independent and normal, distributed as
N (€&;]0,v) with some variance. The regression parameter veg®e (51, ..., 5y)

is to be estimated, along with the error variance. The mantedri observed set of
responsey = (y1,...,yn) IS

y:Flﬁ+€a

whereF is the knowrp x n design matrix withit” columnf; ande = (e1, ..., ¢,)’,
€ ~ N(€|0,vl,), with I, the n x n identity matrix. This defines the sampling
distribution

n

p(YIF, B, v) = [[ N(wilfiB,v) = (2m0) " 2exp( — Q(y, B)/2v),

i=1

whereQ(y,3) = (y — F'8)'(y — F'8) = >, (v — f;3). Observingy this gives
a likelihood function for(3, v). We can write

QYy.B)=(B-B)FF(B-B)+R

where3 = (FF')~'Fy andR = (y — F'8)'(y — F'3). This assumes thdt is of
full rank p, otherwise an appropriate linear transformation of thegiegectors will
reduce to a full rank matrix and the model simply reduces inetision. Herg3 is
the MLE of 3 and the residual sum of squarBgives the MLE ofv asR/n; a more
usual estimate of is s> = R/(n — p), with n — p being the associated degrees of
freedom.

1.16 Reference Bayesian AnalysisReference Bayesian analysis is based on the
traditional reference (improper) prig3,v) « 1/v. The corresponding posterior
density isp(3, v|y, F) «< p(y|F, 3,v)/v and has the following features.

e The marginal posterior fo8 is multivariate T withn — p degrees of freedom,
has mode3 and density

p(Bly, F) = c(n, p)|FF'|"/*{1 + (8 — B)FF (B — B)/(n —p)s*} "/

with ¢(n,p) = T'(n/2)/[T((n — p)/2)(smw(n — p))P/?]. For a largen, the posterior
is roughly N (8|3, s2(FF')~1). Note also that, given any assumed value pthe
conditional posterior fof is exactly normal, namelv (3|3, v(FF')~1).

e The total sum of squares of the responglgs= >, y? factorises ay'y =
R+ B'FF'B. The sum of squares explained by the regressigtyis- R = 3 FF3;
this is also called the fitted sum of squares, and a largeevatplies a smaller
residual sum of squares and, in this sense, a closer fit tcettae d
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e In connection with model comparisons and related issuesy @iantity is the
value of the marginal density of the response data (comdition the model form;
and the adopted reference prior) at the observed valyeramely

p(y“:) — /p(ﬂ,é,v)/’l) d,@dv — CF((’I’L _p)/2) ||:|:I|—1/2R—(n—p)/27

w(n—p)/2
for some constantthat does not depend éhor p. This can also be written as

p(yIF) o« LD v EE ) () 0

For largen, the term{1 — 3'FF'3/(y'y)}("~"/2 in the above expression is approx-
imatelyexp(BlFF’ﬁ/%) wherer =y'y/(n — p).

Some additional comments:

e For models with the same number of parameters that differ thimbughF, the
corresponding observed data densities will tend to be tdoyehose models with
larger values of the explained sum of sque@éEF’B (though the determinant term
plays a role too). Otherwise(y|F) also depends on the parameter dimengion

o TreatingF as a “parameter” of the model, and making this explicit inrtiaelel,
we see thap(y|F) is the likelihood function fof= from the data (in this reference
analysis).

e Orthogonal regressionlf FF' = kl, for somek, then everything simplifies.
Write f; for the j'* column of F’, and 3; for the corresponding component of the
parameter vectgB. Then3 = (f3i,.. ., 3,)’ where eachy; is the individual MLE
from a model on‘;‘- alone, i.ey = f;ﬁj + €, and the elements @ are uncorrelated
under the posterior T distribution. The explained sum ofasgs partitions into a
sum of individual pieces too, namely/ FF'3 = P £ 32, and so calculations
as well as interpretations are easy.

Example 1.16.1 Reference analysis in the AR(1) model.

For the conditional likelihood, the reference prior is givey p(¢,v) « 1/v. The

MLE for ¢ is o = Soro ve—19:/ S, 2. Under the reference prigfyap =
éML - The residual sum of squares is given by

n—1 o ’
t=1 Yt

n n 2
(X o Ytyi—1)
R _ Z th _ Zt—Q
t=2

and so,s?> = R/(n — 2) estimates. The marginal posterior distribution ofis a
univariatet distribution withn — 2 degrees of freedom, centeredigy with scale
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Fig. 1.10 (a)p(¢ly); (b) p(v]y).
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Finally, the posterior fow is a scaled inverse chi-squared with— 2 degrees of
freedom and scal€, Inv — x?(v|n — 2, s?), or equivalently, an inverse gamma with
parameterén — 2)/2 and(n — 2)s?/2, i.e. IG(v|(n — 2)/2, (n — 2)s%/2).

As an illustration, a reference analysis was performed foma series of 500
points simulated from an AR(1) model with= 0.9 andv = 100. Figures 1.10 (a)
and (b) display the marginal posterior densitie$dl/) and(v|y) based on a sample
of 5,000 observations from the joint posterior. The cirdétethe histogram indicate
oML ands? respectively.

1.17 Conjugate Bayesian Analysis.Letp(y;|0) be alikelihood function. A class
II of prior distributions forms @onjugate familyif the posteriom(8|y;) belongs to
the clasdI for every priorp(0) in II.

Consider again the modgl= F'3 + €, with F a knownp x n design matrix and
€ ~ N(e|0,vl,). In a conjugate Bayesian analysis for this model priors efftim

p(B,v) = p(Blv)p(v) = N(BImo,vCo) x IG(v|ng/2,do/2), (1.22)

are taken, withmg a vector of dimensiop andC, a p x p matrix. Both,my and
Cy are known quantities. The corresponding posterior distidgln has the following



24 NOTATION, DEFINITIONS AND BASIC INFERENCE

form

p(/@a'U“:,)/) o< U*[(p+n+n0)/2+1]x

exp{ (8 —mo)'Cy ' (B —mo) J;U(y - F'8)(y—FB)+do }

This posterior distribution has the following features:
° (y|F, ’U) ~ N(Flm(), ’U(FIC()F -+ In))
e The posterior fo3 conditional orw is Gaussian(3|y, F,v) ~ N(m,vC), with
m = mg+ CoF[F'CoF +1,] 1 (y — F'my)
C = Cy— CoF[F'CoF + In]’lF’Co,
or, defininge = y—F'mg, Q = F'CoF+1,, andA = CoFQ~! we havem = my+Ae
andC =Cj — AQA/
o (v|F,y) ~ IG(n*/2,d*/2), withn* = n + ng and

=(y —F'my)'Q 'y — Fmo) + do.

* (BlY,F) ~ T-[m, d"C/n7]

Example 1.17.1 Conjugate analysis in the AR(1) model.
Assume we choose a prior of the fogffv ~ N (0, v) andv ~ IG(ng/2, dy/2), with
ng anddy known. Thenp(¢|F,y,v) ~ N(m,vC) with

1
Yoy ytyt+1 o 1
S i+ L+ 305w

(v|F,y) ~ IG(n* /2,d*/2) with n* = n + ng — 1 and

m =

2
n 21:11 ytyt+1)
d* = y; — <— + do.
Z t 2?711 ytg + 1

1.18 Non-conjugate Bayesian analysisFor the general regression model the
reference and conjugate priors produce joint posteridridigions that have closed
analytical forms. However, in many scenarios it is eithamassible or not desirable
to work with a conjugate prior or with a prior that leads to atfeoior distribution that
can be written in analytical form. In these cases it mightb&sfble to use analytical
or numerical approximations to the posterior. Anotherraliive consists on sum-
marising the inference by obtaining random draws from thetgr@r distribution.
Sometimes it is possible to obtain such draws by direct sitian, but often this is
not the case and so, methods such as Markov chain Monte G&OM(C) are used.
Consider for example the AR(1) model under the full liketido(1.17). No
conjugate prior is available in this case. Furthermorejarof the formp(¢,v)
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1/v does not produce a posterior distribution in closed form. faet, the joint
posterior distribution is such that

(), v|y1.n) X U—(n/2+1)(1 _ ¢2)1/26Xp{%’l}(¢)}. (1.23)

Several approaches could be considered to summarise ttisrjpo distribution.

For instance, we could take a normal approximatiop(t®, v|y1.,) centered at the
ML or MAP estimates of¢, v). In general, the normal approximation to a posterior
distributionp(0|y1.,,) is given by

p(0|y1:n> ~ N(éa ’U(é)), (124)

with & = Oyap andv(8) = [~ logp” (O]y1.n)] -

Alternatively, itis possible to use iterative MCMC methadsbtain samples from
(b, v|y1.n). We summarise two of the most widely used MCMC methods below:
the Metropolis algorithm and the Gibbs sampler. For fullsideration of MCMC
methods see for example Gamerman (1997).

Posterior Sampling

1.19 The Metropolis-Hastings algorithm. Assume that our target posterior dis-
tribution, p(0|y1.,.), can be computed up to a normalising constant. The Metr®poli
algorithm (Metropoliset al, 1953; Hastings, 1970) creates a sequence of random
draws@', 6, ..., whose distributions converge to the target distributioactEse-
qguence can be considered as a random walk whose statiostiipution isp(6|y1.,,).
The sampling algorithm can be summarised as follows:

o Draw a starting poing° with p(8°|y;.,) > 0 from a starting distributiopg(8).

eFori=1,2,...

1. Sample a candida& from a jumping distribution/;(8*|@"~"). If the distri-
butionJ; is symmetric, i.e., it/;(0,|60,) = J;(0:]0,) for all 8,, 8, andi, then
we refer to the algorithm as the Metropolis algorithm.J}fis not symmetric
we refer to the algorithm as the Metropolis-Hastings altiponi

2. Compute the importance ratio

_ p(e*|y1:n)/*]i(0*|_0i71) .
p(0271|y1:n)/‘]’i(0271|0*)
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3. Set

o — 6 with probability= min(r, 1)
~ 1 6! otherwise

An ideal jumping distribution is one that is easy to samptarfrand makes the
evaluation of the importance ratio easy. In addition, theging distributions’; (-|)
should be such that each jump moves a reasonable distartoe ratameter space
so that the random walk is not too slow, and also, the jumpsldhwot be rejected
too often.

1.20 Gibbs sampling. Assumed hask components, i.e9’ = (67,...,6})". The
Gibbs sampler (Geman and Geman, 1984) can be viewed as alspese of the
Metropolis-Hastings algorithm for which the jumping dibtrtion at each iteration

is a function of the conditional posterior denai;(y);f |0i_*jl, y1:n), Whered_; denotes

a vector with all the components 6fexcept for componer&;. In other words, for
each component & we do a Metropolis step for which the jumping distribution is

given by

 p*|gi—1y _ p(0;|0i—7jlay12‘n) if aijzei:jl
Jj.(0716 )—{ 0 otherwise

and soy = 1 and every jump is accepted.
If it is not possible to sample frorm(a;wij,yl;n), then an approximation

g(0j|0i:jl) can be considered. However, in this case it is necessarympueie
the Metropolis acceptance ratio

1.21 Convergence. Intheory, a value from(8|y;.,, ) is obtained by MCMC when
the number of iterations of the chain approaches infinityractice, a value obtained
after a sufficiently large number of iterations is taken aala&/fromp(8|y;.,). How
can we determine how many MCMC iterations are enough to oltaivergence?
As pointed out in Gamerman (1997), there are two generabagpes to the study
of convergence. One is probabilistic and tries to measigtgies and bounds on
distribution functions generated from a chain. So, for eplemit is possible to
measure the total variation distance between the disioivof the chain at iteratioh
and the target distribution0|y., ). An alternative approach consists on studying the
convergence of the chain from a statistical perspectivés approach is easier and
more practical than the probabilistic one, however, it cdguarantee convergence.

There are several ways of monitoring convergence from &ttat viewpoint,
ranging from graphical displays of the MCMC traces for allsome of the model
parameters or functions of such parameters, to sophisticstatistical tests. As
mentioned before, one of the two main problems with simalabased iterative
methods is deciding whether the chain has reached conwgee., if the num-
ber of iterations is large enough to guarantee that theaailsamples are draws
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from the target posterior distribution. In addition, onbe thain has reached con-
vergence it is important to obtain uncorrelated draws fromn posterior distribu-
tion. Some well known statistical tests to assess convermare implemented in
freely available software such as Bayesian Output Ana&a@A) (currently avail-
able atwww.public-health.uiowa.edu/boa/, Smith 2004). Specifically, BOA
includes the following convergence diagnostics: the Bspdkelman and Rubin
convergence diagnostics for a list of MCMC sequences (Bs@okd Gelman, 1998;
Gelman and Rubin, 1992), which monitors the mixing of theudated sequences by
comparing the within and between variance of the sequettee§&eweke (Geweke,
1992) and Heidelberger and Welch (Welch, 1983) diagnqgstibich are based on
sequential testing of portions of the simulated chains terdane if they correspond
to samples from the same distribution; and the Raftery amdd method (Raftery
and Lewis, 1992), which considers the problem of how mamgiitens are needed to
estimate a particular posterior quantile from a single MCti@in. BOA also pro-
vides the user with some descriptive plots of the chains -e-aatrelations, density,
means and trace plots— as well as plots of some of the conveegbagnostics.

Example 1.21.1 A Metropolis-Hastings for an AR(1) model.

Consider again the AR(1) model with the unconditional iikebd (1.17) and a
prior of the formp(¢,v) < 1/v. An MCMC to obtain samples from the posterior
distribution is described below. For each iteratica 1,2, ...
e Samplev® from (v|¢, y1.n) ~ IG(n/2,Q*(¢)/2). Note that this is a Gibbs step
and so every draw will be accepted.
o Samplep’ using a Metropolis step with a Gaussian jumping distributibherefore,
at iteration; we draw a candidate samp}é from a Gaussian distribution centered
atei—!, thisis

d)* ~ N (d)iilvcv) ’

with ¢ a constant. The value af controls the acceptance rate of the algorithm.
In practice, target acceptance rates usually go from 25909%. 4See for instance
Gelmanet al. (2004), Chapter 11 for a discussion on how to set the value of

In order to illustrate the MCMC methodology, we consider@@ Bbservations
generated from an AR(1) model with coefficieht= 0.9 and variance = 1.0. The
MCMC scheme above was implemented in order to obtain pastestimation of the
model parameters based on the 500 synthetic observatianges 1.11 (a) and (b)
display the traces of the model parameters for two chainsG&faLMCMC samples
usingc = 2. Several values afwere considered and the valee- 2 was chose since
it led to a Metropolis acceptance rate of approximately 3T¥e starting values for
the chains were set af = 0.1, ¢° = 0.5 andv® = 3, ¢° = 0.0. It is clear from
the pictures that there seems to be no convergence probleigstes 1.11 (c) and
(d) show the posterior distributions fgrandv based on 450 samples of one of the
MCMC chains taken every other iteration after a burn-in getrof 100 iterations.
The early iterations of a MCMC output are usually discarcheatrter to eliminate, or
diminish as much as possible, the effect of the startingidigion. This is referred to
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Fig.1.11 (a)and (b) Traces of 1,000 MCMC samples of the parametarsdv respectively.
The draws from two chains are displayed. The solid linesesprond to traces from a chain
with starting values of¢", v°) = (0.5,0.1) and the dotted lines correspond to traces with
starting values of¢°, v°) = (0, 3). Panels (c) and (d) show histograms of 450 samples from
the marginal posteriors @f andv. The samples were taken every other MCMC iteration after
a burn-in period of 100 iterations.
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as burn-in. The length of the burn-in period varies greatlpehding on the context
and the complexity of the MCMC sampler.

Discussion and Further Topics
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Appendix

1.22 The uniform distribution. A random variable: follows a uniform distribu-
tion in the intervala, b), witha < b, x ~ U(a,b), orp(z) = U(z|a,b), if its density
function is given by

p(z) = x € [a,b].

1.23 The univariate normal distribution. A random variabler follows normal
distribution with mean: and variance, if its density is given by

p(@) = —= veXP< (xu)Q).

21 2v

We usex ~ N(u,v), or p(x) = N(z|u,v), to denote that: follows a univariate
normal distribution. Ify = 0 ando = 1 we say that: follows a standard normal
distribution.

1.24 The multivariate normal distribution. A random vector of dimensiok
x = (x1,...,2%), that follows a multivariate normal distribution with megrand
variance-covariance matriX, x ~ N(u,X), or p(x) = N(x|u,X), has a density
function given by

p(x) = (2m) 2[5 Zexp | 5 (x — )5 x— )|

1.25 The gamma and inverse-gamma distributions. A random variabler that
follows a gamma distribution with shape parametemnd inverse scale parametgr
x ~ G(a, B), orp(x) = G(z|a, 8), has a density of the form

ﬂa a—1_—pBz

p(x):mx e P x>0,

wherel'(-) is the gamma function. § ~ G(a, 3), thenz follows an inverse-gamma
distributionz ~ IG(«, ), orp(z) = IG(z|a, §) with

p(x) = %x(aﬂ)eﬁ/x, x> 0.
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1.26 The chi-square distribution. « follows a chi-square distribution witly
degrees of freedom if its density is given by

() = 27/2 v/2—1 —z/2 -0
p(r) = F(V/Q)x e , x>0.

This distribution is the same as th&z|v/2,1/2).

1.27 The inverse-chi-square and the scaled inverse chi-sape distributions.
If 2 ~ Inv— x%(v), or p(x) = Inv — x%(v), thenz ~ IG(v/2,1/2). Also, if
x follows a scaled inverse-chi-squared wittdegrees of freedom and scalgi.e.,
x ~ Inv — x%(v, s?), thenz ~ IG(v/2,vs?/2).

1.28 The univariate Student-t distribution. If x follows a Student-t distribution
with v degrees of freedom, locatignand scaler, x ~ t,(u, 0?), if its density is

2 —(v+1)/2
I'((v+1)/2) 1 (z—p
W”ZW(”Z(T)) |

1.29 The multivariate Student-t distribution. A random vecto of dimension
k follows a multivariate Student-t distribution withdegrees of freedom, locatign
and scale matriX;, x ~ T, (u, 2) if its density is given by

I'((v+k)/2)

(k) /2
PX) = T 2) (om)hr? )

_ 1 _
S (1 S xS )

Problems
1. Consider the ARl) modely; = ¢y;—1 + €, with ¢, ~ N (0, v).

(a) Find the MLE of(¢, v) for the conditional likelihood.

(b) Find the MLE of(¢, v) for the unconditional likelihood (1.17).

(c) Assume that is known. Find the MAP estimator @f under a uniform
priorp(¢) = U(4|0, 1) for the conditional and unconditional likelihoods.

2. Show that the distributions df|y, F) and (v]y, F) obtained for the ARl)
reference analysis are the ones given in example 1.16.1.

3. Show that the distributions d@f|y, F) and (v]y, F) obtained for the ARL)
conjugate analysis are the ones given in example 1.17.1.
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4. Consider the following models:

Y = O1Yi—1+ daye—2 + &, (1)
Yt acos(2mwot) + bsin(2rwot) + € (2),

with e, ~ N(0,v).

(a) Sample 200 observations from each model using youritavdnoice of
the parameters. Make sure your choice(for, ¢2) in model (1) lies in
the stationary region. This is, choogg , ¢2) such that-2 < ¢; < 2,
¢1 <1—¢gandg; > ¢o — 1.

(b) Find the MLE of the models parameters. Use the condititkedihood
for model (1).

(c) Find the MAP estimators of the model parameters underdfexence
prior. Again, use the conditional likelihood for model (1).

(d) Sketch the marginal posterior distributign®1, ¢2|y1.») andp(v|y1.»)
for model (1).

(e) Sketch the marginal posterior distributigr{g, b|y1.,) andp(v|y1.n).

(f) Perform a conjugate Bayesian analysis, i.e., repeatn(¢®) assuming
conjugate prior distributions in both models. Study thes#@rity of the
posterior distributions to the choice of the hyperparansétethe prior.

5. Refer to the conjugate analysis of the ARmodel in example 1.17.1. Using
the fact that|y, F,v ~ N(m, vC), find the posterior mode ofusing the EM
algorithm.

6. Sample 1,000 observations from the model (1.1). Usinga distribution
of the formp(¢\”) = p(¢%)) = N(0,¢), for somec andi = 1,2, p(f) =
U(0| — a,a) andp(v) = IG(ayg, Bo), obtain samples from the joint posterior
distribution by implementing a Metropolis-Hastings aligfom.



2 Traditional Time Series Models

Autoregressive time series models are central to modetiossay time series data
analysis and, as components of larger models or in suitabdifired and generalised
forms, underlie non-stationary time-varying models. Thaaepts and structure of
linear autoregressive models also provide important backyl material for appreci-
ation of non-linear models. This chapter discusses modeifand inference for AR

models, and related topics. This is followed by discussiithe class of stationary
autoregressive, moving average models, one which a laegedditraditional linear

time series analysis is predicated.

Structure of Autoregressions

2.1  Consider the time series of equally-spaced quantitiesor ¢t = 1,2, ...,
arising from the model

p
Ys = Z@?h—j + €, (2.1)
i=1

wheree; is a sequence of uncorrelated error terms andsthare constant param-
eters. This is a sequentially defined modgl;is generated as a function of past
values, parameters and errors. There termed innovations, and are assumed to
be conditionally independent of the past values of the seriehey are also often
assumed normally distributed (e;|0,v), and so they are independent. This is a
standard autoregressive model framework,(ARfor short; p is the order of the
autoregression.

AR models may be viewed from a purely empirical standpoiht tlata are
assumed related over time and the AR form is about the sitngless of empirical
models for exploring dependencies. A more formal motivaig of course, based
on the genesis in stationary stochastic process theory Wemproceed to inference
in the model class.

33
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The sequential definition of the model and its Markovian reimply a sequential
structuring of the data density

T

pwrr) =pwip) [] pwilvie—pye—1) (2.2)
t=p+1

for anyT > p. The leading term is the joint density of theinitial values of the
series, as yet undefined. Here the densities are conditofal, . . ., ¢, v); though
this is not made explicit in the notation. If the figstzalues of the series are known
and viewed as fixed constants, d@fid= n + p for somen > 1, then the conditional

density ofy = (yr, yr—1,...,yp+1) given the firsp values is
T
pWlv) =[] pwelve—pye-1)
t=p+1
T
= ]I Nwlfig,v) = NyIF'é,0l,), (2.3)
t=p+1

whereg = (¢1,...,¢p), ft = (Yye—1,. .., y1—p)’ andF is ap x n matrix given by
F = [fr,...,f,41]. This has a linear model form and so, the standard estimation
methods discussed in Chapter 1 apply.

Practically useful extensions of the model (2.3) includedeis with additional
regression terms for the effects of independentregressiahles on the series, differ-
ing variances for the; over time, and non-normal error distributions. This stadda
normal linear model is a very special case of autoregressitich, generally, define
models via sequences of conditional distributions(igtf;) over time.

2.2 Stationary AR Processes.The seriegy;, assumed (at least in principle) to
extend over all time¢ = 0, 1,42, ..., follows a stationary autoregressive model of
orderp, if the stationarity conditions are satisfied. With the inations independent
N(e:]0,v), the stationary distribution of eagh, and of any set ok > 1 of they,
is zero-mean normal. Extending the model to include a noa+reary: for eachy;
givesy; = u+ (f; — ul)’ ¢ + e, wherel = (1,...,1)", ory, = 8+ f,¢ + ¢, where
B = (1 —I"¢)u. The special case of = 2 is discussed in detail in the following
Section.

As mentioned in Example 1.8.1, when= 1, the AR process is stationary for
—1 < ¢ < 1whenthe stationary distribution of each of thés N (|0, v/(1—?)).
At the boundaryy; = 1 the model becomes a non-stationary random walk. The
bivariate stationary distribution df;, y:—1)’ is normal with correlation(1) = ¢1;
that of (y;, y:_x)’ for anyk is p(k) = ¢¥. A positive autoregressive parametgr
leads to a process that wanders away from the stationary ofghe series, with
such excursions being more extensive wkperis closer to unity;p; < 0 leads to
more oscillatory behaviour about the mean.
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With y; = ¢1y:—1 + d2y:—2 + €, the process is stationary for parameter values
lying in the region—2 < ¢1 < 2, ¢1 < 1 — ¢ and¢p; > ¢2 — 1. Further discussion
appears in the following Section.

In the case of general ordgermodels, the stationarity condition imposes a set
of restrictions on the coefficient best represented in terms of the roots of the
autoregressive polynomi@(u) = 1 — Z;’:l ¢;u?, for [u| < 1. This arises through
the representation of (2.1) as

@(B)yt = €t,

using the back-shift operatd?, with By, = y;—1. The process is stationary if, and
only if, the inversion of this equation, namely

Yt = @(B)_let = Z’/Tjet,j

=0

exists and converges, and this is true only if the roots optblgnomial®(u) have
moduli greater than unity. Writé(u) = [[%_, (1 — a;u) so that the roots are the
reciprocals of they;. Generally, thex; may be real-valued or may appear as pairs of
complex conjugates. Either way, the process is statioridey;j < 1 for all j, and
non-stationary otherwise.

2.3 State-Space Representation of an A@p). The state-space representation of
an AR(p) model has utility in both, exploring mathematical struetand, as we shall
see later, in inference and data analysis. One version®fepresentation of (2.1) is
simply

v = Fx (2.4)
Xe = GXi—1 + wy, (2.5)
wherex; = (y¢, yi—1,- - -, Yt—p+1)’, the state vector at time The innovation at time
t appears in the error vecte, = (e, 0,...,0). In addition,F = (1,0,...,0) and
&1 P2 @3 Gp—1  Pp
1 0 O 0 0
G=/0 1 0 -0 0 ) (2.6)
: L0 :
0 O 1 0

The expected behaviour of the future of the process may bibitedh through the
forecast functiory: (k) = E(y:+x|y1:+) @s a function of integers > 0 for any fixed
“origin” t > p, conditional on the most receptvalues of the series in the current
state vectox; = (y¢, Ye—1,.- ., Yi—p+1) . We havefi(k) = F'G*x,. The form is
most easily appreciated in cases when the m#&#rilkas distinct eigenvalues, real
and/or complex. It easily follows that these eigenvaluespaecisely the reciprocals
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roots of the autoregressive polynomial equatip:) = 0, namely thex; above.
Then

p
filk) = erjal, (2.7)
j=1

where thec;; are (possibly complex valued) constants dependingpoand the
current statex;, and thex;’s are thep distinct eigenvalues/reciprocal roots. The
coefficients are given by,; = djeq;. Thed; ande;; values are the elements of the
p—vectorsd = E'F ande, = E~'x,, whereE is the eigenmatrix of3, i.e., E is
thep x p matrix whose columns are the eigenvectors in order correfipg to the
eigenvaluesy;.

The form of the forecast function depends on the combinatioeal and complex
eigenvalues o6s. Supposey;, for example, is real and positive; the contribution to
the forecast function is therajaf. If the process is stationaty;| < 1 for all ¢ so that
this function ofk decays exponentially to zero, monotonically.f > 0, otherwise
oscillating between consecutive positive and negativeaslIf|o;| > 1 the process
is non-stationary and the forecast function is explosivee fielative contribution to
the overall forecast function is measured by the decay raddtee initial amplitude
ctj, the latter depending explicitly on the current state, aeddfore having different
impact at different times as the state varies in respondeetmhovations sequence.

In the case of complex eigenvalues, the fact thad real-valued implies that any
complex eigenvalues appear in pairs of complex conjug&eppose, for example,
thata; andas are complex conjugates, = rexp(iw) anday = rexp(—iw) with
modulusr and argumeny. In this case, the corresponding complex factgeysand
o @re conjugategexp(=+ib; ), and the resulting contribution tf (k), which must
be real-valued, is

cﬂa’f + ctgag = 2a;7" cos(wk + by).

Hencew determines the constant frequency of a sinusoidal ogoiiia the forecast
function, the corresponding wavelength or period being 27/w. In a stationary
model|r| < 1, and so, the sinusoidal oscillations over tintes k& with k& > 0
are subject to exponentially decay through the dampingfact, with additional
oscillatory effects if- < 0. In non-stationary cases the sinusoidal variation explodes
in amplitude asr|* increases. The factoes andb; determine the relative amplitude
and phase of the component. The amplitude fakipmeasures the initial magnitude
ofthe contribution of this term to the forecast functiontgseparately from the decay
factorr. At a future time epock > ¢, the new state vectot, will define an updated
forecast functiory, (k) with the same form as (2.7) but with updated coefficients
depending ox,, and so affecting the factors andb,. Therefore, as time evolves,
the relative amplitudes and phases of the individual comptswvary according to
the changes in state induced by the sequence of innovations.

Generally, the forecast function (2.7) is a linear comborabf exponentially
decaying or exploding terms, and decaying or explodingfaatultiplying sinusoids
of differing periods. Returning to the model (2.1), this ibeaxpected behaviour
translates into a process that has the same form but in waiokach time point,
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the innovatiore; provides a random shock to the current state of the procdss. T
describes a process that exhibits such exponentially dawmpexploding behaviour,
possibly with periodic components, but in which the amplés and phases of the
components are randomly varying over time in response totiwvations.

2.4 Characterisation of AR(2) Processes. The special case gf = 2 is illu-
minating and of practical importance in its own right. Thegess is stationary if
—2< ¢y < 2,01 <1— ¢ andg; > ¢ — 1. In such cases, the quadratic charac-
teristic polynomiaf(u) = 0 has reciprocal roots; lying within the unit circle, and
these define:

e Two real roots whew? + 4¢- > 0, in which case the forecast function decays
exponentially;

e A pair of complex conjugate rootsxp(4iw) whene? + 4¢, < 0. The roots
have modulus: = /—¢; and argument given byos(w) = |¢1|/2r. The forecast
function behaves as an exponentially damped cosine.

We already know that-2 < ¢; < 2 for stationarity; for complex roots, we
have the additional restriction tol < ¢ < —¢?/4. So, in these cases, the model
Y = d1yi—1 + P2y + € represents a quasi-cyclical process, behaving as a
damped sine wave of fixed peri@d /w, but with amplitude and phase characteristics
randomly varying over time in response to the innovatian® large innovations
variancev induces greater degrees of variation in this dynamic, goydical process.

If the innovation variance is very small, or were to becommzs some point,
the process would decay to zero in amplitude due to the dapfpictor. On the
boundary of this region at; = —1, the modulus is- = 1 and the forecast function
is sinusoidal with no damping; in this casg, = 2 cos(w). So, for|¢1| < 2, the
modely; = ¢1y:-1 — y:+—2 + € is the one of a sinusoid with randomly varying
amplitude and phase; with a small or zero innovation vagaritie sinusoidal form
sustains, representing essentially a fixed sine wave otaonamplitude and phase.
It is easily seen that the difference equatign= 2 cos(w)y:—1 — y:—2 defines, for
given initial values, a sine wave of peri@d /w.

2.5 Autocorrelation Structure of an AR(p). The autocorrelation structure of an
AR(p) is given in terms of the solution of a homogeneous differetpeation

p(k) — d1p(k —1) — ... — ¢pp(k —p) =0, k=>p. (2.8)
In general, ifay, . . ., ;- denote the reciprocal roots of the characteristic poly@bmi
®(u), where each root has multiplicity:, ..., m, and>_!_; m; = p, then, the

general solution to (2.8) is
p(k) = aipi(k) + aspa(k) + ... + aipe(k), k=p, (2.9)

wherep; (k) is a polynomial of degreer; — 1.
For instance, in the AR) case we have the following scenarios:
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e The characteristic polynomial has two different real roetsech one with multi-
plicity m; = my = 1. Then, the autocorrelation function has the form

p(k) = G,Oé]f + bOLIQC, k>2,

wherea andb are constants and;, as are the reciprocal roots. Under stationarity
this autocorrelation function decays exponentiallykagoes to infinity and, as we
saw before, this behaviour is shared by the forecast fumcti®he constants
andb are determined by specifying two initial conditions suchp&s) = 1 and
p(=1) = ¢1/(1 — ¢2).

e The characteristic polynomial has one real root with miittity m; = 2 and
S0, the autocorrelation function is given by

p(k) = (a +bk)ay, k>2,

wherea andb are constants and; is the reciprocal root. Under stationarity this
autocorrelation function also decays exponentially gees to infinity.

e The characteristic polynomial has two complex conjugatésroln this case the
reciprocal roots can be written as = rexp(iw) andas = rexp( — iw) and so, the
autocorrelation function is

p(k) = ar® cos(kw +b) k> 2,

wherea andb are constants. Under stationarity the autocorrelationfaretast
functions behave as an exponentially damped cosine.

2.6 The Partial Autocorrelation Function. The autocorrelation and forecast
functions summarise important features of autoregregsiveesses. We now intro-
duce another function that will provide additional infortioa about autoregressions:
the partial autocorrelation function or PACF. We start bfjrdeg the general form of
the PACF and we then see that the partial autocorrelatiofficeats of a stationary
AR(p) process are zero after lag This fact has important consequences in estimat-
ing the order of an autoregression, at least informally. rcpice, it is possible to
decide if an autoregression may be a suitable model for agjives series by looking
at the estimated PACF plot. If the series was originally getegl by an ARp) model
then its estimated partial autocorrelation coefficientsutth not be significant after
thep-th lag.

The partial autocorrelation function or PACF of a procesdeéfined in terms
of the partial autocorrelation coefficients at lagdenoted by (k, k). The PACF
coefficient at lagk is a function of the so called best linear predictorygfgiven
yk—1,---,y1. Specifically, this best linear predictor, denotedylﬁyl, has the form
y’;i_l = [1yk—1 + ...+ Br—1y1, whered = (B4, ..., Br—1)’ is chosen to minimise
the mean square linear prediction eriG(y; 7%1271)2_ If y{fl is the minimum mean
square linear predictor @, based oy, . . ., yx—1 and the process is stationary, then
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it can be shown thags ! is given byy~ = 8141 + ... 4+ Bx_1yx_1. The PACFis
then defined in terms of the partial correlation coefficiefits, k), for k = 1,2, .. .,
given by

p(y1,v0) = p(1) k=1
kyk) = - _ 2.10
ok, k) { plyr —yf toyo —yh Tt k> 1, (2.10)

wherep(y;, y;) denotes the correlation betwegnandy; .

If {y:} follows an ARp) it is possible to show thap(k, k) = 0 for all k£ >
p (for a proof see for example Shumway and Stoffer, 2000, Gwapt. Using
some properties of the best linear predictors it is also ipes$o show that the
autocorrelation coefficients satisfy the following eqaatfi

Lntpr =Y, (2.11)
wherel', is ann x n matrix whose elements argy(j — k)}7,_,, and ¢,
v, aren-dimensional vectors given bg,, = (¢(n,1),...,é(n,n)) and~y, =

(v(1),...,~(n)). If T, is non-singular then we can wrigg, = T, 'v,,. Alter-
natively, when dealing with stationary processes it is fidsgo find ¢,, using the
Durbin-Levinson recursion (Levinson, 1947; Durbin, 196@8)follows. Fom = 0,
#(0,0) = 0. Then, forn > 1,

Sy = P~ Sili d(n — 1, k)p(n — k)
’ 1= to(n—1,k)pk)

with
(//)(na k) = (Z)(?’L - 1) k) - ¢(n7n)¢(n - 17” - k)v
forn>2andk=1,...,n— 1.

The sample PACF can be obtained by substituting the autoemeas in (2.11), or
the autocorrelations in the Durbin-Levinson recursioniteydample autocovariances
and the sample autocorrelatiofi§) and s(-). The sample PACF coefficients are
denoted byj(k, k).

Forecasting

2.7 Intraditional time series analysis, the one-step-aheadigtion ofy;, 1, i.e.,
the forecast ofj;; 1 giveny;.; is given by

yf-s-l = ot Dy + o(t,2)ye—1 + ... + o(t, t)y1, (2.12)
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with ¢, = (6(¢, 1), ..., 6(t,t))" the solution of (2.11) ab = ¢. The mean square
error of the one-step-ahead prediction is given by

MSEf ) = E(yer1 = yi1)?* = 7(0) = %Iy 'y, (2.13)
or, using the Durbin-Levinson recursion this can be regetgicomputed as,
MSE!,, = MSE{™ (1 ¢(t,1)?),

with M SEY = ~(0).

2.8  Similarly, thek-step ahead prediction gf ., based ony, ; is given by
vl = oW Dy + .+ 6B (8, )y, (2.14)

with ¢ = (6 (t,1),..., 6" (t, 1))’ the solution o', p{*) = ~{¥ wherey¥) =
(v(k),y(k+1),...,v(t + k —1))’. The mean square error associated withithe
step-ahead prediction is given by

MSE} = E(yesn — yisr)? = 1(0) — 7T 1y P, (2.15)

It is also possible to compute the forecasts and the asedcmean square errors
using the innovations algorithm proposed by Brockwell amdi® (1991) as follows.

The one-step-ahead predictor and its associated mearesggr@or can be com-
puted iteratively via

¢
Yir1 = th,j(ytﬂ—j—yiijﬂ), (2.16)
j=1
t—1 ‘
MSE{,, = ~(0)=> b}, ,MSEl,, (2.17)
§=0

fort =1,2,...,whereforj =0,1,...,t — 1,

Yt —J) = Y120 buj—ibe i MSE!

MSE!,

bii—j =

Similarly, thek-steps ahead prediction and the corresponding mean sqeraoedre
given by

t+k—1

k—i—
Yigr = Z bt+k71,j(yt+k7j*yfik_; b, (2.18)
=k
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t+k—1
MSE!,, = ~(0)— Z b p 1 ;MSEL ;. (2.19)
=k

For AR(p) models witht > p, the previous equations provide the exact one-step-
ahead and-steps-ahead predictions. In particular, it is possiblede that igy,
follows a stationary ARp) process, then

Yrir = G1Yt + Goye—1 + - . + PplY—pr1. (2.20)

So far we have written the forecasting equations assumatghle parameters are
known. If the parameters are unknown and need to be estimatedh is usually
the case in practice, then it is necessary to substitute drenpeter values by the
estimated values in the previous equations.

When a Bayesian analysis of the time series model is perfbrithe forecasts
are obtained directly from the model equations. So, forinst, if we are dealing
with an AR(p), the k-step-ahead predictions can be computed using eitherrfprste
estimates for the model parameters or samples from therpwsiéstributions of the
parameters. This will be discussed in detail in the nexticect

Estimation in AR Models

2.9 Yule-Walker and Maximum Likelihood. Writing a set of diference equations
of the form (2.8), in which the autocorrelations are substl by the estimated
autocorrelations, together with the corresponding setitiél conditions leads to the
Yule-Walker estimateg and, such that

VN

R,¢ =pp. 0 =%0)— R, o, (2.21)

whereR,, is ap x p matrix with elementg(k — j), j,k = 1,...,p. These estimators
can also be computed via the Durbin-Levinson recursionBseekwell and Davis,
1991 for details). It is possible to show that in the case ati@bary AR processes,
the Yule-Walker estimators are such thal' (¢ — ¢) ~ N(0,0I',") and thato is
close tov when the sample siz€ is large. These results can be used to obtain
confidence regions abo&t

Maximum likelihood estimation in ARp) models can be achieved by maximising
the conditional likelihood given in (2.3). It is also podsilbto work with the uncon-
ditional likelihood. This will be discussed later when thé l&stimation method for
general ARMA models are described.

2.10 Basic Bayesian Inference for AR models.Return to the basic model (2.1)
and the conditional sampling density (2.3), and supposethigadatay ;). are
observed. Now make the parametégs v) explicit in the notation, so that (2.3) is
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Fig. 2.1 A section of an EEG trace

formally p(y|®, v, y1.,). Equation (2.3) defines the resulting likelihood function of
(¢, v). This is a conditional likelihood function, conditional omet assumed initial
valuesy.p, so that resulting inferences, reference posterior ini@ee or otherwise,
are also explicitly conditional on these initial values. fdon dealing with this later.
For now, we have a linear modely|, v, y1.,) = N(y|F ¢, vl,,) and we can apply
standard theory. In particular, the reference posteriatysis described in Chapter
1 can be applied to obtain baseline inferencegfow).

Example 2.10.1EEG data analysis.

Figure 2.1 displays recordings of an electro-encephalndEEG). The data dis-
played represent variations in scalp potentials in miatisvduring a seizure, the
time intervals being just less than one fortieth of a secdfite original data were
sampled at 256 observations per second, and the 400 poitle iRigure were
obtained by selecting every sixth observation from a midese section.

The sample autocorrelations (not shown) have an apparemetasinusoial form,
indicative of the periodic behaviour evident from the ddta,with a period around
12-14 time units. The damping towards zero evident in thepdamutocorrelations
is consistent with stationary autoregressive componeitts @@mplex roots. The
sample partial autocorrelations are evidently strongbyatige at lags bewteen 2 and
7 or 8, but appear to drop off thereafter, suggesting an agtession of ordey = 7
orp =_8.
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An AR(8) model is explored as an initial model for these data; 8 andyg.400
representthe final = 392 observations, the first 8 being conditioned upon for initial
values. The posterior multivariate Student-T distribnti@s 384 degrees of freedom
and so, it is practically indistinguishable from a normgahas mean

é = (0.27,0.07, —0.13, —0.15, —0.11, —0.15, —0.23, —0.14)’

and approximately common standard deviations at 0.05. illbstrates quite typ-
ical variation and, to some degree, decay of coefficienth imitreasing lag. The
innovations standard deviation has posterior estimatet1.52.

We fix ¢ = ¢ to explore the model based on this point estimate of the patem
vector. The corresponding autoregressive equadiém) = 0 has four pairs of
complex conjugate roots; the corresponding moduli and leagéh pairs(r;, \;)
are (in order of decreasing modulus)

(0.97,12.73);  (0.81,5.10); (0.72,2.99); (0.66,2.23).

The first term here represents the apparent cyclical pattemavelength around
12 — 13 time units, and has a damping factor close to unity, indicpti rather
persistent waveform; the half-life is abokit= 23, i.e. 0.97* decays to about 0.5
atk = 23, so that, with zero future innovations, the amplitude of thiseform is
expected to decay to half a starting level in about two futleg. By comparison, the
three other, higher frequency components have much fastetydates. The pattern
here is quite typical of quasi-cyclical series. The higlgtrency terms, close to the
Nyquist frequency limit, represent terms capturing vergrshun oscillations in the
data of very low magnitude, essentially tailoring the mddébw level noise features
in the data rather than representing meaningful cyclicalpanents in the series.

At time T = 400, or t = n = 392, the current state vectot; together with
the estimated parametér implies a forecast function of the form given in (2.7)
in which the four component, damped sinusoids have relaiaplitudes2a,; of
approximately 157.0, 6.9, 18.0 and 7.0. So the first comptarfevavelength around
12.73is quite dominant at this time epoch (as it is over thiespan of the data), both
in terms of the initial amplitude and in terms of a much lowecaly rate. Thus the
description of the series as close to a time-varying sineevieweinforced.

Figure 2.2 displays the data and the forecast function frenend of the series over
the nextk = 200 time epochs based on the estimated vahuEigure 2.3 represents
more useful extrapolation, displaying a single ‘sampledrfel based on estimated
parameter values. This is generated simply by successiralylating future values
YTk = Z§:1 qBijJrk_j +erqroverk=1,2,..., etc., where ther; are drawn
from N(-|0, s?), and substituting sampled values as regressors for thesfuihis
gives some flavour of likely development and the form is app#y similar to that
of the historical data, suggesting a reasonable model igéiscr. These forecasts
do not account for uncertainties about the estimated paem{éb, s?) so, they do
not represent formal predictive distributions though argejclose approximations.
This point is explored further below. Further insight inteetnature of the likely
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Fig. 2.2 EEG trace and forecast function from end of series

development, and also of aspects of model fit, are often gtb@y repeating this
exercise, generating and comparing small sets of possihless.

2.11 Simulation of Posterior Distributions. Inferences for other functions of
model parameters and formal forecast distributions maypkeed via simulation.
Suppose interest lies in more formal inference about, famgle, the period; of
the dominant cyclical component in the above analysis o8& series, and other
features of the structure of the roots of the AR polynomiahodgh the posterior
for (¢, v) is analytically manageable, that for theis not; posterior simulation may
be used to explore these analytically intractable distidms. Similarly, sampled
futures incorporating posterior uncertainties ab@wtv) may be easily computed.

Example 2.11.1 EEG data analysis (continued).

A total number of 5,000 draws were made from the full norma#rse-gamma pos-
terior distribution for(¢, v). For each such draw, a sampled futyie 1, . . ., yrix,

for any horizonk, was sampled as before, but now based on the simulated values

(¢,v) at each sample, rather than the estimétess?). This delivers a sample of
size 5,000 from the full joint posterior predictive distition for (yr1, ..., yr+k)-
Averaging values across samples provides a Monte Carl@ajppation to the fore-
cast function. Exploring sampled futures provides Figlikes2.4, where additional
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Fig. 2.3 EEG trace and sampled future conditional on parameterem'g(t;@, 52)

parameter uncertainties are incorporated. In this arglys additional uncertainties
are small and have slight effects; other applications magifberent.

Turn now to inference on the AR polynomial roets Each posterior dravip, v)
delivers a corresponding root veciarwhich represents a random sample from the
full posteriorp(aly, x,). Various features of this posterior sample fermay be
summarised. Note first the inherent identification issu, tite roots are unidentifi-
able as the AR model is unchanged under permutations of thezgpts on they;.
One way around this difficulty is to consider inference ontsardered by modulus
or frequency (note the case of real roots formally corredpdn zero frequency).
For example, the dominant component of the EEG model has ideatified as
that corresponding to the complex conjugate roots with #ngelst period, around
12 — 13 time units. Ordering the complex values of each sampledfsetts leads
to those with the largest period representing a sample frenposterior distribution
for the period of the dominant component, and similarly fer $amples of the corre-
sponding modulus. The left and right panels of Figure 2.pldisthe corresponding
histograms in this analysis.

Note that no mention of stationarity has been made in thilysisa The reference
posterior forg, a multivariate Student-T distribution, is unconstrainad does not
theoretically respect a constraint such as stationaritgome applications, it may be
physically meaningful and desirable to impose such an agdamand the analysis
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Fig. 2.4 EEG trace and sampled future from full posterior predictiigribution
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should then be modified; theoretically, the prior {@r, v) should be defined as zero
outside the stationarity region, whatever the form insidée simplest approach
is to proceed as in the unconstrained analysis, but to simggdct samplede, v)
values if theg vector lies outside the stationarity region, a conditicatt il trivially
checked by evaluating the roots of the implied AR polynomialcases where the
data/model match really supports a stationary seriesefbetron rate will be low and
this provides a reasonable and efficient approximationeacatialysis imposing the
stationarity constraint through the prior. In other casséjence of non-stationary
features may lead to higher rejection rates and an ineffiaiealysis; other methods
are then needed. Some references below indicate work dtesg tines. Of course,
an over-riding consideration is the suitability of a stistationarity assumption to
begin with; if the series, conditional on the appropriatenef the assumed model,
is really consistent with stationarity, this should be evided automatically in the
posterior for the AR parameters, whose mass should be ctratesh on values
consistent with stationarity. This is, in fact, true in thecanstrained EEG data
analysis. Here the estimated AR polynomial root structatéhe reference posterior
mean[p) has all reciprocal roots with moduli less than unity, siglug stationarity.
In addition, the 5,000 samples from the posterior can bekadtesimilarly; in fact,
the actual sample drawn has no values with roots violatiatiostarity, indicating
high posterior probability (probability one on the Monterl@aposterior sample)
on stationarity. In other applications, sampling the pastenay give some values
outside the stationary region; whatever the values, thizvides a Monte Carlo
approach to evaluating the posterior probability of a stediy series (conditional on
the assumed AR model form).

2.12 Order Assessment. Analysis may be repeated for different values of model
orderp, it being useful and traditional to explore variations ingrénces and predic-
tions across a range of increasing values. Larger valuear@f limited by the sample
size, of course, and fitting high order models to only modedatta sets produces
meaningless reference posterior inferences; large nuoflgarameters, relative to
sample size, can be entertained only with informed and proper distributions for
those parameters, such as smoothness priors and otheigsmaerielow. Otherwise,
increasing runs into the usual regression problems of over-fitting anilihearity.

Simply proceeding to sequentially increasend exploring fitted residuals, changes
in posterior parameter estimates and so forth, is a veryatdduexercise. Var-
ious numerical summaries may be easily computed as adjontttig, the two
most widely known and used being the so-called Akaike infatfam criterion, or
AIC and the Bayesian information criterion or BIC (Akaike6D; Akaike, 1974;
Schwarz, 1978). The AIC and BIC are now described togethir avimore formal,
reference Bayesian measure of model fit. As we are compamaglmwith differing
numbers of parameters, we do so based on a common samplédhsizewe fix
a maximum ordep* and, when comparing models of various orders p*, we
do so in conditional reference analyses using the latter T — p* of the full T’
observations in the series.
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Fig. 2.6 Log-likelihood function for AR model order, computed fronarginal data densities
(labelled M), together with negated AIC criterion (labell&) and BIC criterion (labelled B)

For a chosen model order explicit dependence omis made by Writingg%p for
the MLE of the AR parameters, anﬁ for the corresponding posterior estimate of
innovations variance, i.e. the residual sum of squaresled/by»n — p. For our
purposes, the AIC measure of model fit is taker2as+ nlog(sf,), while the BIC
is taken adog(n)p + nlog(sz). Values ofp leading to small AIC and BIC values
are taken as indicative of relatively good model fits, witthie class of AR models
so explored (they may, of course, be poor models compardd atfter classes).
Larger values op will tend to give smaller variance estimates which decredlse
second term in both expressions here, but this decreaseadigedl for parameter
dimension by the first term. BIC tends to choose simpler nothen AIC. For the
EEG series, negated AIC and BIC values, normalised to zéhe ahaximum, appear
in Figure 2.6, based gn* = 25. Also displayed there is a plot of the corresponding
log-likelihood function for model order, computed as falm

In a formal Bayesian analysis, the orgds viewed as an uncertain parameter and
S0 any prior ovep is updated via a likelihood function proportional to the giaal
data denSity?(y(P+1):T|Xp> - fp(y(l)+1):T|¢a v, Xp)dp(¢a ’U), Wherep(¢a ’U) is the
prior under the ARp) model and it should be remembered that the dimensiaf of
depends op. Given proper priorg(¢, v) across the interesting range of order values
p < p*, adirectnumerical measure of relative fit is available tigtotinis collection of
marginal densities which defines a valid likelihood funafior the model order. Todo
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this, however, requires a proper prigip, v) that naturally depends on the parameter
dimensiorp and this dependency is important in determining the resulikelihood
function. The use of the traditional reference prior indates these calculations due
to impropriety. Alternative approaches to constructingpgar but, in some senses,
uninformative priors may be pursued (see later referertmgsthe critical need for
priors to be consistent as model dimension varies remainsveftheless, under
the assumedly common reference ppdp, v) « 1/v, the marginal data densities
are defined up to a proportionality constant and follow digefrom the reference
Bayesian analysis of the linear regression model in Chdpt&ihe maginal density
values are closely related to the AIC and BIC values. Thereefee log-likelihood
function so computed for the EEG series, wjth = 25, appears in figure 2.6.
Apparently, both this reference log-likelihood functiomdathe usual AIC and BIC
criteria suggest orders between 8 and 10 as preferableg femearlier analysis was
based o = 8.

Various alternatives based on different priors give simigsults, at least in terms
of identifyingp = 8 or 9 as most appropriate. We note also that formal computatio
of, for example, predictive inferences involving averagover p with respect to
computed posterior probabilities on model order is possihlcontexts where proper
priors for (¢, v) are defined across models.

2.13 Analytic Considerations: Initial Values and Missing Data. The above
analysis partitions the full data serigs.r into the p initial valuesy;., and the
final n = T — p valuesy(,,1).r and is then conditional og;.,. Turn now to the
unconditional analysis, in which the full likelihood fuimmt for (¢, v) is

p(y1!T|¢7U) = p(y(p+1):T|¢a’Uaylip)p(ylil)|¢av) (222)
= p(y|¢a v, Xp)p(xp|¢7 U)'

The conditional analysis simply ignores the second compidng2.23). Apparently,
whether or not this is justifiable or sensible depends onesanas follows.

In some applications, it is appropriate to assume some fédistsibution for the
initial valuesx,, that does not, in fact, depend ¢, v) at all. For example, it is
perfectly reasonable to specify a model in which, say, te&itution N (x,|0,A) is
assumed, for some specified variance mairixn such cases, (2.23) reduces to the
first component alone, and the conditional analysis is exact

Otherwise, whem(x,|¢, v) actually depends of, v), there will be a contri-
bution to the likelihood from the initial values, and the ddional analysis is only
approximate. Note, however, that, as the series lefgticreases, the first term of
the likelihood, based on = T — p observations, becomes more and more domi-
nant; the effect of the initial values in the second likeblddactor is fixed based on
these values, and does not change witlon a log-likelihood scale, the first factor
behaves in expectation aén), and so the conditional and unconditional analyses
are asymptotically the same. In real problems with finitéut in whichp is usually
low compared to, experience indicates that the agreement is typically cbven
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with rather moderate sample sizes. It is therefore commactioe, and completely
justifiable in applications with reasonable data samplessito adopt the conditional
analysis.

The situation has been much studied under a stationarityrgston, and a vari-
ation of the reference Bayesian analysis is explored hemdelstationarity, any
subset of the data will have a marginal multivariate normstrithution, with zero
mean and a variance matrix whose elements are determindwbyddel parame-
ters. In particular, the initial values follow (x,|0, vA(¢)) where thep x p matrix
A(¢) depends (only) o through the defining equations for autocorrelations in AR
models. So (2.23), as a function @p, v), is

Pyl P, v) o< v 2 |A (D) 2exp(—Qyrr, @) /20), (2.23)

whereQ (y1.1, ¢) = ZtT:pH(yt —fi9)* +x,A(¢)"'x,. As developed in Boet al.
(1994, Chapter 7), this reduces to a quadratic fQ¥tp;.7, ¢) = a — 2b'¢p + ¢'Co,
where the quantities b, C are easily calculable, as follows. Define the the symmetric
(p+1) x (p+ 1) matrixD = {D;;} by elementsD;; = 3" 77"y, y;1 s then

D is partitioned as
a b
D= (_b : ) |

One immediate consequence of this is that, if we ignore theraenant factor
|A(¢)|, the likelihood function is of standard linear model form. eTtraditional
reference priop(¢, v) o< v~! induces a normal/inverse gamma posterior, for exam-
ple; other normal/inverse gamma priors might be used silyildn the reference
case, full details of the posterior analysis can be workealuth by the reader. The
posterior mode fotp is now&)* = C!b. For the EEG series, the calculations lead
to

55* = (0.273,0.064, —0.128, —0.149, —0.109, —0.149, —0.229, —0.138)’
to three decimal places. The approximate value based omtithtional analysis is
¢ = (0.272,0.068, —0.130, —0.148, —0.108, —0.148, —0.226, —0.136)’,

earlier quoted to only two decimal places in light of the esponding posterior
standard deviations around 0.05 in each case. The diffeseircthe third decimal
place in each case, are negligible, entirely so in the confespread of the posterior.
Here we are in the (common) context whéras large enough compared o and
S0, the effect of the initial values in (2.23) is really ngiflle. Repeating the analysis
with just the firstI' = 100 EEG observations, the elements¢gfand qb* differ by
only about 0.01, whereas the associated posterior staedans are around 0.1; the
effects become more marked with smaller sample sizes, thategstill well within
the limits of posterior standard deviations with much serallalues off". In other
applications the effects may be more substantial.
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Ignoring the determinant factor can be justified by the sasgmptotic reasoning.
Another justification is based on the use of an alternatifereace prior: that
based on Jeffrey’s rule. In this case, as shown in Bbal(1994), the Jeffrey's
prior is approximately(¢, v) o< |A(¢)|'/2v~1/2; this results in cancellation of the
determinant factor so the above analysis is exact.

Otherwise, under different prior distributions, the exposterior involves the
factor |A(¢)|, a complicated polynomial function ap. However, |A(¢)| can be
evaluated at any specifiedl value, and numerical methods can be used to analyse
the complete posterior. Numerical evaluation of the exatENE now a standard
feature in some software packages, for example. Bayesialysi using Monte
Carlo methods is also easy to implement in this framework.

2.13.1 Initial Values Revisited via Simulation. Introduce the truly uncertain ini-
tial valuesxo = (yo,y-1,-..,¥—(p—1))’ - Adjust the earlier conditional analysis to
be based on all’ observationg.. and now to be conditional on these (imaginary)
initial valuesx,. Then, whatever the prior, we have the postefip, v|y1.7, Xo)-

In the reference analysis, we have a normal/inverse gamstanir now based on
all T observations rather than just the last T' — p, with obvious modifications.
Note that this posterior can be simulated, to deliver drawg, v) conditional on
any specific initial vectok,. This can be embedded in an iterative simulation of the
full joint posteriorp(¢, v, Xo|y1.7) if, in addition, we can sampbe, vectors from the
conditional posteriop(xo|¢, v, y1.7) for any specified ¢, v) parameters.

In the case of a stationary series, stationarity and thaingodel form imply
reversibility with respect to time; that is, the basic AR mbtolds backwards, as
well as forwards, in time. Hence, conditional ¢¢,v) and future series values
Yt+1, Yt+2, - - -, the current valuey, follows the distributionN (y:|g;¢, v) where
0; = rev(Xetp) = (Ye41,- - -, Ye4p)’; here the operatarev(-) simply reverses the
elements of its vector argument. Applying this to the iniw@ues at = 0, —1, . . .,

leads to
—(p—1)

p(xold,v,yr) = [ N(wilgig, ).
t=0

Hence, giver{¢, v), a vectorx, is simulated by sequentially sampling the individual
component normal distributions in this product: first drggagiven the known data
X, and the parameters; then substitute the sampled yalagthe first element of the
otherwise know data vectar, 1, and drawy;; continue this way down tg_,,_1).
This is technically similar to the process of simulating tufe of the series illustrated
earlier; now we are simulating the past.

In the modern, computational world of applied statisti¢gs approach is both
trivially implemented and practically satisfying as it pides, modulo the Monte
Carlo simulation, exact analysis. Further, extensionasidAR models to incorpo-
rate various practically relevant additional featureguredly lead to Markov chain
simulations as natural, and typically necessary, appesicianalysis, so that dealing
with the starting value issue in this framework makes goodee
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It should also be clear that the same principle applies tblpros of missing data.
For any set of indices such that the valueg, are missing (at random, that is, the
reasons for missing data do not have a bearing on the valties ofodel parameters),
then iterative simulation analysis can be extended and fieddio incorporate the
missing values as additional uncertain quantities to imagtd. Further details can
be worked out in the framework here, as with the missingahitalues above, and
details are left to the reader. We revisit missing value=r lat the context of general
state space models, and state space representationsreggassions in particular.

Further Issues on Bayesian Inference for AR Models

2.14 Sensitivity to the choice of prior distributions. Additional analyses explore
inferences based on longer order AR models with variousesrppors for the AR
coefficients. One interest is in exploring the sensitivifytioe earlier, reference
inferences under ranges of proper and perhaps more playsibl assumptions. In
each case the model is based on (a maximunylagR5, assuming that higher order
models would have negligible additional coefficients arad,tin any case, the higher
order coefficients in the model are likely to decay. The twiongrfor ¢ are centred
around zero and so induce shrinkage of the posteriors t@athed prior means of
zero for all parameters. In each case, the firgtlues ofy;. are fixed to provide
conditional analyses comparable to that earlier discuaskethgth.

2.14.1 Analysis based on normal priors.A first analysis assumes a traditional
prior with the coefficients i.i.d. normal; the joint prior §(¢|0, wl,), for some
scalar variancev and so, it induces shrinkage of the posterior towards ther pri
mean of zero for all parameters. The hyperparameteiill be estimated together
with the primary parametelg, v) via Gibbs sampling to simulate the full posterior
for (¢, v, w). We assume prior independencewcdndw and adopt uniform priors,
sop(v) andp(w) are constant over a wide range; in each analysis we assume thi
range is large enough so that the corresponding conditmmsdériors are effectively
proportional to the appropriate conditional likelihoodhétions, i.e., the truncation
implied under the prior has little effect. Posterior simigdas draw sequentially from
the following three conditional posteriors, easily dediifrem the model form and
general normal linear model theory reviewed in Chapter 1.

« Given(v, w), posterior forg is N (¢)|¢, B) whereB™* = w1, + v~ 'FF’ and
¢ = BuLFy.

e Given(¢, w), posterior forn =t is Ga(v—1|n/2, €€e/2) based on residual vector
e=y—-Fo.

e Given (¢, v), posterior forw=! is Ga(wt|p/2, ¢'p/2).

For the EEG series, Figure 2.7 graphs the approximate paistaeans of the
¢;'s based on a Monte Carlo sample of size 5,000 from the simoulainalysis so
specified. This sample is saved following burn-in of 500&atems. Also plotted
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Fig. 2.7 Estimates of¢p in EEG analyses. The vertical bars indicate approximate 95%
posterior intervals for the); from the reference analysis, centred about reference narste
means. The symbols X indicate approximate posterior meams the analysis based on
independent normal priors. Symbols O indicate approximpagterior means from the analysis
based on the two-component, normal mixture priors
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are the reference posterior means with two posterior stdrdiviation intervals, for
comparison. Some shrinkage of the coefficients is evidantygh apparently not
dramatic in extent, and the posterior means are not incaabpawith the reference
values, indicating some robustness to prior specificatioferences and forecasts
based on the normal prior will not differ substantially frahmse based on the
reference prior. In this analysis, the posterior for thardtage parametey/w is
apparently unimodal, centred around 0.12 with mass premgamily concentrated in
the range 0.08-0.16.

2.14.2 Discrete Normal Mixture Prior and Subset ModelsA further analysis
illustrates priors inducing differential shrinkage effe@across they; parameters;
some of thep; may indeed be close to zero, others quite clearly distirehfzero,
and a prior view that this may be the case can be embodiedidatd modifications
of the above analysis. One such approach uses independerst gonditional on
individual scale factors, namelyy (¢,|0,w/d;), where the weightg; are random
quantities to be estimated. For example, a model in whick oné or two of thep;
are really significant is induced by weiglitsclose to unity for those parameters, the
other weights being relatively large resulting in priorglgrosteriors concentrated
around zero for the negligible weights. This links to the aept of subset auto-
regressions, in which only a few parameters at specific lagseally relevant, the
others, at possibly intervening lags, being zero or closeeto. A class of priors
for ¢ that embody this kind of qualitative view provides for auttdin inference on
relevant subsets of non-negligible parameters and, afédgtaddresses the variable
selection question.

Probably the simplest approach extends the case of independrmal priors
above, inwhich each; = 1,to the case ofindependent priors that are two-component
normals, namely

TN (9410, w) + (1 — 7)N(¢;(0,w/L)

wherer is a probability andl a specified precision factor.  >> 1, the second
normal componentis very concentrated around zero, so flxisira prior effectively
states that eacty; is close to zero, with probability — 7, and is otherwise drawn
from the earlier normal with variance.

Assumel is specified. Introduce indicators such that,; = 1 or 0 according to
whetherg; is drawn from the first or the second of the normal mixture congmts.
Theseu; are latent variables that may be introduced to enable thalation analysis.

Write u = (uy,...,up,) and, for any set of values, write §; = u; + (1 — u;)L,
so thaté; = 1 or L; also, define the matrid\ = diag(di, ..., d,). Further, write
k= Zle u; for the number of coefficients drawn from the first normal comgnt;

k can be viewed as the number of non-neglible coefficientstiers being close to
zero. Note that, givent, k has a prior binomial distribution with success probability
.

For completeness and robustnesss usually viewed as uncertain too; in the
analysis belowy is assigned a beta prioBe(r|a, b), independently of the other
random quantities in the model. This implies, among othierg a beta-binomial
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marginal prior for the numbeékr of significant coefficients, namely

n B(a,b)
p(k) = (k) Blathkbtp—k)
overk =0,...,p, whereg(-,-) is the beta function.

Under this model and prior specification, the various coodél posterior distri-
butions to be used in Gibbs sampling of the full posterior(iorv, w, u, 7) are as
follows.

e Given(v, w, u, ), posterior forg is N (¢|b, B) whereB~! = w='A + v~ 'FF
andb = Bv—!Fy.

e Given (¢, w,u, ), posterior forv=! is Ga(v~'|n/2, €e/2) based on residual
vectore=y — F'¢.

e Given (¢, v, u, ), posterior forw=! is Ga(w=t|p/2, q/2) with scale factor
defined byg = >°%_, ¢39;.

e Given(¢, v, w, m), theu; are independent with conditional posterior probabili-
tiesw; = Pr(u; = 0|¢, v, w, 7) given, in odds form, by

Ty

= ——exp(—(L - 1)¢?/2w)/VL.

1—7Tj l1—m

e Given(¢, v, w, u), posterior forr is beta, namelBe(r|a + k, b+ p — k) where
k= Z?:l Uj.

Iterative sampling of these conditional distributions\pdes samples ap, v, w, u,
andr forinference. The additional symbolsin Figure 2.7 indédhe posterior means
for the ¢; from such an analysis, again based on a simulation samgesi&, 000
from the full posterior; the analysis adopts= 1,b = 4 and L = 25. We note
little difference in posterior means relative to the earéinalyses, again indicating
robustness to prior specifications as there is a good dealtafrere.

The implied beta-binomial prior fok appears in Figure 2.8, indicating mild sup-
port for smaller values consistent with the view that, tHotlgere is much prior
uncertainty, several or many of the AR coefficients are jikkelbe negligible. The
posterior simulation analysis provides posterior sampfes, and the relative fre-
guencies estimate the posterior distribution, as plotteigure 2.8. This indicates
a shift to favouring values in the 5-15 ranges based on treatwtlysis under this
specific prior structure; there is much uncertainty abouepresented under this
posterior, though the indication of a evidence for more thash a few coefficients
is strong. Additional information is available in the fulbgterior sample; it car-
ries, for instance, Monte Carlo estimates of the posterobabilities that individual
coefficientsp; are drawn from the first or second mixture component, siryetp-
proximate posterior means of the corresponding indicatpr$ his information can
be used to assess subsets of significant coefficients, ascatijuexploring posterior
estimates and uncertainties about the coefficients, aginmé&R.7.
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Fig. 2.8 Prior and approximate posterior distribution for the numienon-negligible AR
coefficients, out of the totgh = 25, in the EEG analysis under the two-component mixture
prior

2.15 Alternative Prior Distributions.

2.15.1 Scale-mixtures and Smoothness PriordAnalyses based on alternative
priors may be similarly explored; some examples are meatidrere, and may be
explored by the reader. For instance, the second analyais éxample of a prior
constructed via scale-mixtures of a basic normal priorfierindividual coefficients.
The mixing distribution in that case is discrete, placingsmafr at; = 1 and
d; = 25. Other mixing distributions are common in applied Bayesiamkya key
example being the class of gamma distributions. For instatadke the weights;

to be independently drawn from a gamma distribution withpghand scale equal
to k/2 for somek > 0; this implies that the resulting marginal prior for eagh

is a Student-t distribution witk degrees of freedom, mode at zero and scale factor
Jw. This is, in some senses, a natural heavy-tailed alternttittlee normal prior,
assigning greater prior probabilities #g values further from the prior location at
zero. This can result in differential shrinkage, as in theecaf the discrete normal
mixture in the example.

A further class of priors incorporate the view that AR coédfits are unlikely to
be large at higher lags, and ultimately decay towards zehis Hind of qualitative
information may be importantin contexts whers large relative to expected sample
sizes. This can be incorporated in the earlier normal praméwork, for example,
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by generalising to independent pridv§¢;|0, w/d;) where the weights are now fixed
constants that concentrate the priors around zero foréags;; an example would
be §; = j2. Note that this may be combined with additional, random wisigh
develop decaying effects within a normal mixture prior, &ivially implemented.
Traditional smoothness priors operate on differences Ematers at successive
lags, so that priors fo,; 1 — ¢;| are also centred around zero to induce a smooth
form of behaviour ofp; as a function of lag, a traditional ‘distributed lag’ concept;
a smooth form of decay of the effects of lagged values of theses often naturally
anticipated. This is again a useful concept in contexts alh@ng order models
are being used. One example of a smoothness prior is giverebgralising the
normal prior structure as follows. Take the normal margifé,|0,w/d1) and,
for j > 1, assume conditional prior& (¢,|¢;—1,w/d;); here thed; weights are
assumed to increase with lggto help induce smoothness at higher lags. This
specification induces a multivariate normal prior (corutitil on thed; and w),
p(@) = p(o1) [[i—ap(95l¢i-1) = N(]0,A"'w), where the precision matrix
A = H'AH is defined byA = diag(éy,...,d,) and

1 0 0 -~ 0 0
-1 1 0 0 0
H=| 0 -1 1 0 0
0 0 0 .- -1 1

Again, thed; weights may be either specified or random, or a mix of the tvosiétior
inferences follow easily using iterative simulation, vieagghtforward modifications
of the analyses above.

2.15.2 Priors based on AR latent structure.Consider again the ARR) model
whose characteristic polynomial is given®yu) = 1—¢1u—. . .—¢,uP. The process
is stationary if the reciprocal roots of this polynomial bamoduli less than unity.
Now, consider the case in which there is a maximum numbér péirs of complex
valued reciprocal roots and a maximum numbeRoéal valued reciprocal roots with
p = 2C + R. The complex roots appear in pairs of complex conjugated) pair
having modulus:; and wavelength; —or equivalently, frequency; = 27 /\; —
forj =1,...,C. Eachrealreciprocal roothas modulysfor j = C+1,...,C+R.
Following Huerta and West (1999), the prior structure gikefow can be assumed
on the real reciprocal roots

Ty o~ 7Tr,71I(_1)(T‘j) + me0lo(r5) + e i (r5)
+(1 =70 —mp o1 — Tr1)gr(75), (2.24)

wherel(-) denotes the indicator functiop,(-) is a continuous density ovér-1,1)
andr,.. are prior probabilities. The point massesat= +1 allow us to consider non-
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stationary unit roots. The point mass-at= 0 handles the uncertainty in the number
of real roots, since this number may reduce below the pré&gmmaximumR. The
default option forg,.(-) is the uniformg,.(-) = U(:| — 1,1), i.e., the reference prior
for a component ARL) coefficientr; truncated to the stationary region. Similarly,
for the complex reciprocal roots the following prior can lssamed

ri o~ meolo(r) +meadi(ry) + (1= Te1 — 7e0)ge(T5),
Ao~ By, (2.25)

with g.(-) acontinuous distribution dh< r; < 1andh(\;) acontinuous distribution
on2 < A\j < Ay, forj =1,...,C. The value of), is fixed and by default it
could be set tay/2. In addition, a so called “component reference prior” (Haer
and West, 1999) is induced by assuming a uniform prior on tiglied AR(2)
coefficients2r; cos(2w/A;) and —r?, but restricted to the finite support of; for
propriety. This is defined by.(r;) o 7%, so that the marginal for; is Be(-[3,1),
andh();) ocsin(2m/A;) /A3 on2 < A; < A,. The probabilities. o andr, ; handle
the uncertainty in the number of complex components andstationary unit roots,
respectively. Finally, uniform Dirichlet distributionseathe default choice for the
probabilitiesr,. . and, ., this is

Dir(wr,flv’frn()v’frr,l“—; 17 1); Dir(’frc,()vﬂ_c,l“-; 1)7

and an inverse-Gamma prior is assumeafafG(v|a, b).

A MCMC sampling scheme can be implemented to obtain sampten the
posterior distribution of the model parameters

0 = {(T17 )\1)7 ceey (TC) )‘C)7TC+17 «o s TC+Ry Tr —1, Ty 0, Tr,1, Tc,0, 7TC,17U7X0}7

with Xo = (yo, - .., ¥—(p—1))’» thep initial values. Specifically, if for any subsét
of elements 08, 6\ 0" denotes all the elements &fwith the subse®™ removed, the
MCMC algorithm can be summarised as follows.

e Foreachj = C +1,...,C + R, sample the real roots from the conditional
marginal posteriop(r;|0\r;, Xo, y1:n). As detailed in Huerta and West (1999), the
conditional likelihood function for; provides a normal kernel iry and so, obtaining
draws for each; reduces to sampling from a mixture posterior with four congras,
which can be easily done.

e Foreachj =1, ..., C, sample the complex roots from the conditional marginal
posteriorp(r;, A;|0\(r;, Aj), X0, y1:n). Sampling from this conditional posterior
directly is difficult and so, a reversible jump Markov chairoMe Carlo step is
necessary. The reversible jump MCMC (RIMCMC) method inicedi in Green
(1995), permits jumps between parameter subspaces ofediffdimensions at each
iteration. The method consists on creating a random sweepmsis-Hastings al-
gorithm adapted for changes in dimensionality. The RIMCN©Grithm is described
in the Appendix.
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o Samplgn,,_1, 70, 7r,1) and(m. o, 7,1 ) from conditionally independent Dirich-
let posteriors as detailed in Huerta and West (1999).

e Samplev from an Inverse-Gamma distribution.

e Samplex,. Huerta and West (1999) shows the time reversibility prypfar
AR models with unit roots, and so, it is possible to sampleitiiteal valuesx, in
similar way to the one described in section 2.13.1.

Example 2.15.1A RIMCMC for an ARY) model with structured priors.

We consider the analysis of 100 observations simulated &#0#R(2) process with
a single pair of complex roots with modulus= 0.9 and wavelength = 8. We fitan
AR(4) to these data using the structured priors previously desdriWe setC = 2
andR = 0 and so, two RIMCMC steps are needed to sarople\;) and(r2, A2).
Each RIMCMC step has a certain number of moves. For insténte chain is
currently atr; = 0, the following moves can be considered, each with prolgbili
1/3

e Remain at the origin.

e Jump at new values of the forfa, wy).

e Jump at new values of the for(n, wy).

Details about the RIMCMC algorithm for the general (ARcase are discussed
in Huerta (1998). Free software is available to perform @it inference for AR
models with structured priors. The software is cal@domp and can be downloaded
fromwww.isds.duke.edu/isds-info/software.html. ARcomp was used to fit
an AR(4) with structured priors to the simulated data. Figure 2.9shthe posterior
distribution for the model order, and the posteriors for the number of complex pairs
C and the number of real characteristic roéts Note that in this exampl& was
set to zero a priori and so, the posterior gives probability w R = 0. From these
graphs it is clear that the model is adequately capturing\R€2) structure in the
simulated data, aBr(p = 2|y1.,) > 0.8 andPr(C = 1|y1.,) > 0.8.

Figure 2.10 displays the posterior distribution (@f, ;) (bottom panels) and
(r2, A2) (top panels). We obtaiRr(r1 = O|y1.,) = 0.98 andPr(ra = Oly1.,) = 0,
which are consistent with the fact that the data were sirediftom an AR2) process.
In addition, the marginal posteriors fog and )\, are concentrated around the true
valuesr = 0.9 and\ = 8.

Example 2.15.2 Analysis of the EEG data with structured priors.

We now consider an analysis of the EEG data shown in Figure<riy structured
priors. In this example we set = R = 6 and so, the maximum model order
IS pmax = 2% 6 + 6 = 18. Figure 2.11 shows the posterior distributionspoi”'
and R. This analysis gives highest posterior probability to a elodth 4 pairs of
characteristic roots and 3 real roots, or equivalently aghadth p = 11. However,
there is considerable uncertainty in the number of real amdptex roots and so,
models with10 < p < 16 get significant posterior probabilities. Figure 2.12 disysl
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Posterior distributions for p, C and R

Probablity.
0.0 0.4 08
[

AR order

Probabilty
00 04 08
L

number of complex pairs

Probability
00 04 08
L

number of real roots

Fig. 2.9 Posterior distibutions of the model order, the number of giem pairs and the
number of real components for the simulated data

the marginal posterior distributions ef and 4, i.e., the marginals for the modulus
and wavelength of the component with the highest moduluse Nat these pictures
are consistent with the results obtained for the referenaéyais of an AR8) model
presented previously.

Autoregressive, Moving Average (ARMA) Models

2.16 Structure of ARMA Models. Consider a time serieg, fort = 1,2,...,
arising from the model

p q
Y= biy—it Y e +er (2.26)
i=1 j=1

with ¢, ~ N(0,v). Then,{y,} follows an autoregressive moving average model, or
ARMA (p, ¢), wherep andg are the orders of the autoregressive and moving average
parts, respectively.

Example 2.16.1MA(1) process.
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Posterior distributions for p, C and R
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Fig. 2.11 Posterior distributions of the model ordé¥,and R for the EEG data
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If y; follows a MA(1) processy; = 0.1 + €, the process is stationary for all the
values off. In addition, it is easy to see that the autocorrelation fionchas the
following form

1 k=0
0 otherwise.

Now, if we consider a MAL) process with coefficien} instead off, we would
obtain the same autocorrelation function and so, it wouliirpmssible to determine
which of the two processes generated the data. Therefaseydicessary to impose
identifiability conditions orf. In particular,% > 1is the identifiability condition for
a MA(1), which is also known as the invertibility condition, sinténplies that the
MA process can be “inverted” into an infinite order AR process

In general, for a MAgq), the process is identifiable or invertible only when the
roots of the MA characteristic polynomi@(u) = 1+ 61u + ... + 6,u? lie outside
the unit circle. In this case it is possible to write the MA pess as an infinite order
AR process. For an ARMf, q) process, the stationarity conditions are written in
terms of the AR coefficients, i.e., the process is statiomanly when the roots of
the AR characteristic polynomidl(v) =1 — ¢1u — ... — ¢,u? lie outside the unit
circle. The ARMA process is invertible only when the rootslef MA characteristic
polynomial lie outside the unit circle. So, if the ARMA pra=is stationary and
invertible, it can be written either as a purely AR procesinéifite order, or as a
purely MA process of infinite order.

If y, follows an ARMA(p, ¢) we can write®(B)y; = ©(B)e,, with
®B)=1-¢p1B—...—¢,B” and ©(B)=1+6,B+...+6,B7,
whereB is the backshift operator. If the process is stationary theran write it as
a purely MA process of infinite order
ye =2 (B)O(B)er = U(B)er = > vjerj,
j=0
with ¥(B) such that®(B)¥(B) = ©(B). The; values can be found by solving

the homogeneous difference equations given by

P
Y= > ¢rtbj k=0, j>max(p,q+1), (2.27)
k=1
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with initial conditions

J
b= Y drthik =10;, 0<j<max(p,q+1), (2.28)
k=1

andfy = 1. The general solution to the equations (2.27) and (2.28)y&n by

i = alpi(G) + ...+ adpe(), (2.29)
whereay, . .., a, are the reciprocal roots of the characteristic polynomial) = 0,
with multiplicitiesmy, . .., m,. respectively, and eagh(j) is a polynomial of degree

mi—l.

2.17 Auto-Correlation and Partial-Autocorrelation Functions. If y, follows a
MA (q) process, it is possible to show that the ACF is given by

1 k=0
S 00,4k
k=4 Zumo Ok g (2.30)
p(k) +Zj:1 02 q
0 k>q,

and so, from a practical viewpoint it is possible to idenpifyrely MA processes by
looking at sample ACF plots, since the estimated ACF coefiisi should drop after
theg-th lag.

For general ARMA processes the autocovariance functioeamritten in terms
of the general homogeneous equations

vk)—dry(k—1)—...—¢py(k—p) =0, k>max(p,qg+1), (2.31)

with initial conditions given by

p q
Y(k) =Y ok —j) =vd 05k, 0<k<max(p,g+1). (2.32)

j=1 j=Fk

The ACF of an ARMA is obtained dividing (2.31) and (2.32)4§0).

The PACF can be obtained using any of the methods descrit@sttion 2.6. The
partial autocorrelation coefficients of a M4) process are never zero, as opposed to
the partial autocorrelation coefficients of an @R process which are zero after lag
p. Similarly, for an invertible ARMA model, the partial autmeelation coefficients
will never drop to zero since the process can be written asfanite order AR.

2.18 Inversion of AR Components. In contexts where data series are of reason-
able length, we can fit longer order AR models rather than ARdAther, more
complex forms. One key reason is that the statistical arsalgs least conditional
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analyses based on assumedly fixed initial values, is muderea$he reference
analysis for ARp) processes described previously, for example, is essgritialal
compared with the numerical analysis required to produogptes from posterior
distributions in ARMA models (see next sections). Anothéridg motivation is that
longer order AR models will closely approximate ARMA fornihe proliferation of
parameters is an issue, though with longer series and pessi® of smoothness pri-
ors or other constraints, such as in using subset AR modigsstnot an over-riding
consideration.

If this view is adopted in a given problem, it may be useful arfidrmative to use
the results of an AR analysis to explore possible MA composgncture using the
device of inversion, or partial inversion, of the AR modelhidis described here.
Assume thay; follows an AR(p) model with parameter vect@s = (¢1,...,¢,),

SO we can write
p

O(B)y, = H(1 —a;B)y; = €4,
i=1
where they; are the autoregressive characteristic roots. Often thiéhbavsubsets
of pairs of complex conjugate roots corresponding to gpasiedic components,
perhaps with several real roots. Stationary componentsrgried by roots with
moduli less than unity.

For some positive integer < p, suppose that the final — r roots are identified
as having moduli less than unity; some or all of the firsbots may also represent
stationary components, though that is not necessary fdotlosving development.
Then, we can rewrite the model as

T P
H(l —a;B)y: = H (1—a;B) 'e; = U*(B)ey,
i=1 i=r+1

where the (implicitly) infinite order MA component has thesfficients of the infinite
order polynomiall™ (u) = 1+ 3272 | ¢5u/, defined by

H (1 — aiu).

p
1=0"(u)
j=r+1

So we have the representation

T oo
=Y Sy tea+y Ui,
i=1 i=1

where the' new AR coefficients; are defined by the characteristic equatiiiu) =
[1i—; (1 — aiu) = 0. The MA termsy} can be easily calculated recursively, up to
some appropriate upper bound on their numbergs&xplicitly, they are recursively
computed as follows:

efori=1,...,q takey; =0fori=1,2,...,q; then,
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efori=r+1,...,p,
— update); = 7 + a4, and then,

*for j =2,...,q, updatey; = 7 + a;pj_;.

Supposep is set at some estimate, such as a posterior mean, in tie) Arbdel
analysis. The above calculations can be performed for aegifspd value of- to
compute the corresponding MA coefficients in an inversioth approximating
ARMA (1, ¢) model. If the posterior fog is sampled in the AR analysis, the above
computations can be performed repeatedly for all samgledctors, so producing
corresponding samples of the ARMA parameteisand*. Thus, inference in
various relevant ARMA models can be directly, and quitelgasdéduced by inversion
of longer order AR models. Typically, various values-a¥ill be explored. Guidance
is derived from the estimated amplitudes and, in the caseroptex roots, periods of
the roots of the AR model. Analyses indicating some comptatéat are persistent,
i.e. that have moduli close to unity and, in the cases of cerlots, longer periods,
suggest that these components be retained in the AR désoripThe remaining
roots, corresponding to high frequency characteristiteérdata with lower moduli
and, if complex, high frequency oscillations, are then thedidates for inversion to
what will often be a low order MA component. The calculati@mas be repeated,
sequentially increasingand exploring inferences aboutthe MA parameters, to assess
a relevant approximating order.

Example 2.18.1 Exploring ARMA structure in the EEG data.

Itis of interest to enquire as to whether or not the residoaastructure in the EEG
series may be adequately described by alternative moviatpge structure with,
perhaps, fewer parameters than the above 8 or more in the #dRipon. This can

be initiated directly from the AR analysis by exploring imsins of components of
the auto-regressive characteristic polynomial, as fadlow

For any AR parameter vectgr, we have the model

8

¢(By: = [[(1 — iB)y: = &

i=1

where, by convention, the roots in order of decreasing motiubur AR(8) analysis
there is a key and dominant component describing the magliceyfeatures that has
modulus close to unity; the first two roots are complex coafag corresponding to
this component, the reference estimatepgiroduces an estimated modulus of 0.97
and frequency of 0.494. Identifying this as the key deteemirof the AR structure,
we can write the model as

2 8

H(l —a;B)y: = H(l —a;B) e = U (B)ey,

i=1 =3
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where the infinite order MA component is defined via

1=9%u)

J

8
(1 — aiu).
=3

So we have the representation

oo
Yo = P1Yt—1 + PrYr—2 + € + Z vie—j,
j=1

where ¢7 = 2r;cos(wy) and ¢ = —r?, with (r1,w;) being the modulus and
amplitude of the dominant cycle; in our case, the referemmstgoior mean from the
fitted AR(8) model indicates values close ¢§ = 1.71 and¢3 = —0.94. The MA
termsy); can be easily calculated recursively, as detailed above.

This can be done for any specified AR vector¢. Note that the roots typically
are complex, though the resulting must be real-valued. Note also that thewill
decay rapidly so that in the recursive algorithm is often rather moderate. Figure
2.13 displays a summary of such calculations based on te&rexiAR(8) analysis.
Hereq = 8 is chosen, so that the approximating ARMA model is AR[243),
but with the view that the MA term is almost necessarily ofitting. The above
computations are performed in parallel for each of the 5@0@ctors sampled from
the reference posterior. This provides a Monte Carlo sawipdéze 5,000 from the
posterior for the MA parameters obtained via this inversemhique. For each the
sample distribution of values af; is summarised in Figure 2.13 by the vertical bar
and points denoting approximate 90% intervals, 50% intsm@ad median. Note the
expected feature that only rather few, in this case really ®yof the MA coefficients
are non-negligible; as a result, the inversion methodsestgghat the longer order
AR model is an approximation to a perhaps more parsimonidRigIA(2, 2) form
with AR parameters near 1.71 ard.94, and with MA parameters around 1.4 and
—0.6.

This analysis is supported by an exploratory search acré3dM\(p, ¢) models
for p andgq taking values between 1 and 8. This can be done simply to peocgh
guidelines as to model order using the conditional and agmate log-likelihood
and AIC computations, for example. Conditioning on the fiStobservations in
each case, the AIC values so computed are actually miningispd= ¢ = 2, so
supporting the approach above. This model very signifigatdminates others with
p < 2, with AIC values differing by at least 5 units. The differesae far less for
higher order models, and indeed a range of models with3 or 4 come close on
the AIC scale, with the ARMAM, 7) being the closest, less than one unit away on the
AIC scale.

The approximate MLEs of the ARM®, 2) parameters, based on this conditional
analysis in R (R Development Core Team, 2004), are 1.70 J@08—0.92 (0.03)
for the AR component, and 1.37 (0.06) and.51 (0.06) for the MA. These agree
well with the inversion of our Bayesian AR) analysis. Note that the inversion



AUTOREGRESSIVE, MOVING AVERAGE (ARMA) MODELS 69

15 4 {
1.0 ~

05 A

coefficient

e+

0 2 4 6 8

MA coefficient index

Fig. 2.13 Approximate posterior intervals for the first 8 MA coefficisrfrom a partial
inversion of the reference AR) analysis of the EEG series. Vertical bars display approtéma
90% highest posterior density intervals, the marks dend% Bitervals and the dots denote
posterior medians
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approach directly supplies full posterior inferencesotigh easily implemented
posterior simulations, in contrast to likelihood appraeghNote that this analysis
could be repeated for higher order AR models. ProceedingRa®) or AR(12)
produces models more taylored to minor noises featureseofitta. Subsequent
inversion suggests possible higher order refinements, &ngARMA(3, 3) model,
though the global improvements in data fit and descriptiemanor. Overall, though
some additional insights are gleaned from exploring the MAcsure, this particular
segment of the EEG series is best described by th@p&hd further analysis should
be based on that. In other contexts, however, an ARMA straatay often be
preferred.

2.19 Forecasting and Estimation ARMA processes.

2.19.1 Forecasting ARMA models.Consider a stationary and invertible ARMA
process with parameteys, . . ., ¢, andf,, .. ., §,. Given the stationarity and invert-
ibility conditions, it is possible to write the process asuagly AR process of infinite
order and so

Yerk = D G5 Yrek—j + €rih, (2.33)

j=1

or as an infinite order MA process

(o)
Yok = OO etk g+ erpk- (2.34)
j=1
Lety, ", bethe minimum mean square predictogofy, based ow;, y:—1, - - -, ¥1, Yo,
Y1, ..., which we denote ag_.;. In other wordsy, 5’ = E(yi+k|y—oc:t). Then,
it is possible to show that (see problem 4)
k—1
Yerk = Ypin = Zejet%—ja (2.35)
7=0

with 65 = 1 and so, the mean square prediction error is given by

MSE;_O,: = E(Yytyr — y;jf)Q = (9;-‘)2. (2.36)
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For a given sample siZE, only the observationg,, . . ., yr are available, and so, we
consider the following truncated predictor as an approsiona

k—1 T+EkE—-1
—o00,T * —o0,T *
vrenl =D Gurli D Gyris. (2.37)
j=1 j=k
This predictor is computed recursively for= 1,2, ..., and the mean square pre-

diction error is given approximately by (2.36).
In the AR(p) case, ifT" > p, the predictory%H computed as in (2.12), given by

Y1 = O1yYr + d2yr—1 + - .+ SpYr—pi1, (2.38)

yields to the exact predictor. This is true in general for @nyin other words,
y%+k = Yrip = y;fk’T, and so, there is no need for approximations. For general
ARMA (p, ¢) models, the truncated predictor in (2.37) is

P q

—0,T —o0,T

Yrin = § :¢ijfk—j + E Oi€t i (2.39)
=1 =

wherey, >" =y, for1 <t < T,y, " = 0fort < 0, and the truncated prediction
errors are given byl =0fort <0ort > T and

etT = ¢(B)y;oo’T - 91€tT,1 - = Qqeglq

forl1<t<T.

2.19.2 MLEandleastsquares estimationForan ARMA(p, ¢) model we needto
estimate the parametgBsandv whereB = (¢1,...,¢p,61,...,0,)". Thelikelihood
function can be written as follows

T

p(y1.7|B,v) = Hp(ytIylz(Hpﬁ,v)- (2.40)

t=1

Assuming that the conditional distributiongfgiveny;. ;) is Gaussian with mean
t—1

yi~* and variancd}! ! = vri !, we can write
T (ye — yt—1>2
—2log [p(y1.7|B,v)] = T log(2mv) + Z {log(ri_l) + ti_tl

t=1 Tt

, (2.41)

wherey!~! andr!~! are functions of3 and so, the maximum likelihood estimates
of @ andv are computed by minimizing the expression (2.41) with resfe3d and

v. The equation (2.41) is usually a non-linear function ofgheameters and so, the
minimization has to be done using a non-linear optimiza#ityorithm such as the
Newton-Raphson algorithm described in Chapter 1.
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Least squares (LS) estimation can be performed by minigisia expression

s =y we—u

t
t=1 Tt

with respect to3. Similarly, conditional least squares estimation is perfed by
conditioning on the firsp values of the serieg;., and assuming that, = ¢,_; =
--- = €1—4 = 0. In this case we can minimize the conditional sum of squanesgi

by
T
S.(B)= Y «(B), (2.42)

wheree;(8) = y: — Y1y ¢iye—i — 21—y 05€:—(B). Wheng = 0 this reduces to a
linear regression problem and so, ho numerical minimigagchnique is required.
When the number of observatiolfiss not very large conditioning on the first initial
values will have an influence on the parameter estimatesicinsases working with
the unconditional sum of squares might be preferable. @éwegthodologies have
been proposed to handle unconditional least squares distiimbn particular, Boxet
al. (1994, Appendix A7.3) showed that an approximation to theomditional sum
of squaresS(3) is

T

SB) =Y &), (2.43)

t=—M

with é;(3) = E(e:|y1.,) @and ift < 0 these values are obtained by backcasting. Here
M is chosen to be such that, ' __ é2(8) ~ 0.

A Gauss-Newton procedure (see Shumway and Stoffer, 20@io8e2.6 and
references therein) can be used to obtain an estimatg sayB, that minimises
S(B) or S.(B). For instance, in order to find an estimate @fthat minimises
the conditional sum of squares in (2.42), the following aiifpn is repeated by
computing3"?) at each iteration = 1,2, ..., until convergence is reached

,B(j) _ l@(jfl) + A(l@(jfl))7

where .
() - S 2Ol
Dotpr1 Z(B)2:(B)
and
_(9a(B) 9 (8)\'
z(B) = < 90, ""’aﬁp+q> . (2.44)
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Convergence is considered to be achieved wi##h!) — 3| < 33, or when

Qe(BYHY) = Qe(BY))| < o, wheres g anddq, are set to some fixed small values.
Here,Q.(8) is a linear approximation df.(3) given by

T

QB = Y [a(B®) (8- B)z(B)]

t=p+1
and3?) is an initial estimate of.

Example 2.19.1Conditional LS estimation of the parameters of an ARMA).
Consider an stationary and invertible ARNIA 1) process described by

Yt = P1Yi—1 + 0161 + €,

with e, ~ N(0,v). Then, we can write;(8) = y: — d1yi—1 — 01e:-1(8), with

B = (¢1,601). Additionally, we condition oreg(3) = 0 andy;. Now, using the
expression (2.44) we have that = (z 1, 2,2)" With 2,1 = yi—1 + 612:-1,1 and
zt0 = €—1 + 01212, Wherez, = 0. The Gauss-Newton algorithm starts with

some initial value 0B = (¢\*, 6!*))’ and then, at each iteratign= 1,2, ..., we
have
Bu+y — gl 4 ZtT:Q Zt(ﬂ)et(ﬁ).
-2 2(8)2:(8)

2.19.3 State-Space representation and Kalman-Filter estiion. Due to the
computational burden of maximising the exact likelihoodegi in (2.40), many of
the existing methods for parameter estimation in the ARMAdeiling framework
consider approximations to the exact likelihood, such astickcasting method of
Box et al. (1994). There are also approaches that allow the compuntafidhe
exact likelihood function. Some of these approaches ire/obwriting the ARMA
model in state-space or dynamic linear model (DLM) form, #meh applying the
Kalman filter to achieve parameter estimation (see for exaidphn and Ansley,
1985; Harvey, 1981 and Harvey, 1991).

A state-space or DLM model is usually defined in terms two &qoa, one that
describes the evolution of the time series at the obsenaitievel, and another
equation that describes the evolution of the system ovey.tine of the most useful
ways of representing the ARM#, ¢) model given in (2.26) is by writing it in the
state-space or DLM form given by the following equations

y = E..0;
0t = G0t,1 —+ Wi, (245)

whereE,,, = (1,0,...,0)" is a vector of dimensiom, with m = max(p, g + 1), w;
is also a vector of dimensian with w; = (1,04, ...,0,,-1)'¢; andG is anm x m
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matrix given by

p1 1 0 0
o 0 1 0

G= :
(//)'rn—l 0 0 te 0

Here¢,. = 0 for all » > p and#,. = 0 for all » > ¢. The evolution noise has a

variance-covariance matrix given byU = o2(1,601,...,60,, 1) (1,01, ...,0,,_1).
Using this representation it is possible to perform paramestimation for general

ARMA (p, ¢) models. We will revisit this topic after developing the thgof DLMs

in Chapter 4.

2.19.4 Bayesian Estimation of ARMA processesThere are several approaches
to Bayesian estimation of general ARMA models, e.g., Zel{i®96), Boxet al.
(1994), Monahan (1983), Marriott and Smith (1992), Matrittal. (1996), Chib
and Greenberg (1994) and Barnettal. (1997).

We briefly outline the approach proposed in Marriettal. (1996) and discuss
some aspects related to alternative ways of performing8agestimation in ARMA
models. Such approach leads to parameter estimation of ARMA models via
Markov chain Monte Carlo by reparameterising the ARMA paggars in terms of
partial autocorrelation coefficients. Specifically, fét,.7|v>™) be the likelihood for
the T observations given the vector of parametér's = (¢',0', 02, %), €},), with

€0 = (€0, €—1,...,€1—¢)". This likelihood function is given by
1 T
Flnrly*) = <2m2>T/2exp{—ﬁ > - M}, (2.46)
where,

p q
p1 = Z diy1—i + Z 0i€1—s,
i=1 i=1
P t—1 q
Ht = Z DiYi—i + Z 0i(ye—i — pe—i) + Z Oies—i, t=2,...,q,
i=1 i=1 i—t
p q
e = Zéf)z'ytﬂ' + Zai(ytﬂ' —pe—i), t=q+1,...,T.
i=1 i=1

The prior specification is as follows

ﬂ-("/)*) = 7T(X0, €0|¢7 0, 0-2)71-(0-2)77-(@5) 0)7
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with (X, €0|@, 0, 02) = N(0,0%Q), 7(c?) x 0~2 andw (¢, 0) a uniform distri-
bution in the stationary and invertibility regions of the MR process denoted l,
andC,, respectively. Therefore, the joint posterior #f is given by

T
(W yrr) (o%”*wexp{% ;(ytuJQ} o
N((x5, €5)'10,02€) (2.48)

The MCMC algorithm to perform parameter estimation can barearized in
terms of the following steps:

e Sample(o?|¢, 0, %0, €0). This is done by sampling? from the inverse-
Gamma full conditional distribution with the following for

T
T+p+gql %o \ o1 Xo 2
IG( 2 i) [< € > @ € th:l(yt o)

e Sample(Xq, €o|®, 8, 02). The full conditional distribution ofx}, €}) is a
multivariate normal, however, it is computationally simpto use Metropolis
steps with Gaussian proposal distributions.

e Sample(o, 0|02, %0, €0). In order to samplep and 8, successive transfor-
mations forC, andC, to p-dimensional and-dimensional hypercubes and
then toR? and R?, respectively, are considered. The transformations,of
andc, to thep-dimensional ang-dimensional hypercubes were proposed by
Monnahan (1984), extending the work of Barndorff-Nielsed &chou (1973).
Specifically, the transformation for the AR parametersvegiby

qﬁ(l,k):(ﬁ(l,k*l)*Qﬁ(k,k)(ﬁ(k*l,k*l), Z‘:lv'-'ak*lv

whereg(k, k) is the partial autocorrelation coefficient angi, p) = ¢;, thej-

th coefficient from the ARp) process defined by the characteristic polynomial
®(u) =1—¢ru—...— ¢puP. The inverse transformation in iterative form is
given by

¢(i7 k— 1) = [¢(27 k) + ¢(k7 k)¢(k7 k— Z)]/[l - ¢2(k7 k)]7

and the Jacobian of the transformation is

P [p/2]
J =TI = otk )07 T (1 = 6(24,25)).
i=1 j=1

Now, the stationarity condition ogp can be written in terms of the partial
autocorrelation coefficients &s(k, k)| < 1 forall k = 1,...,p. Marriottet
al. (1996) then propose a transformation froj= (¢(1,1), ..., ¢(p,p))’ to
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ry = (¢*(1,1),...,9%(p,p))', Withr}, € RP. The¢*(j,j) elements are given
by
i 1+ qb(j,j))
B = 10 < .
#69) g(ldmﬁ
Similarly, atransformationfror@itor; € R? can be defined using the previous
two steps replacing by 6.

Then, instead of sampling and@ from the constrained full conditional dis-
tributions, we can sample unconstrained full conditioriatributions forr
andrj on RP and RY, respectively. Marriotet al. (1996) suggest using a
Metropolis step as follows. First, compute MLE estimatespadind 0, say
(<}5, é), with its asymptotic variance covariance matfi{d; o) Use the trans-
formations described above to obta('frg, f;) and a corresponding variance
covariance matrix>* (computed via the delta method). Let,(r7,ry) be
thep + g-dimensional multivariate normal distribution with me(ai@, f;) and
variance covariance matrix*. Takeg,;, to be the proposal density in the
Metropolis step build to samplg;, andry.

Example 2.19.2Bayesian estimation in an ARMA(1,1).

Consider an ARMA(1,1) model described by = ¢y;—1 + Oys—1 + €, with
N(€t|0,0'2>. In this cas&y = Yo, €0 = €0, ¢ = ¢, rg =20, r:; = gf)*, r; = 0%,

1 1 1+ ¢ 1+6
Q= 1+92+2¢9 ’ (b* = 1Og (—)5 9* = 1Og (—)7
(1 Ut alot) 1—¢ 1-6
and the inverse of the determinant of the Jacobian of thefivamation is given by

(1—-¢*)(1-062)/4.

Discussion and Further Topics

2.20 ARIMA Models
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2.21 ARFIMA Models

Appendix

The Reversible Jump MCMC algorithm. In general, the RIMCMC method can
be described as follows. Assume tléats a vector of parameters to be estimated
andr(d@) is the target probability measure, which often is a mixturdemsities, or

a mixture with continuous and discrete parts. Supposerthat 1,2, ..., indexes

all the possible dimensions of the model. If the currentestdtthe Markov chain

is 8 and a move of typen and destinatio®™ is proposed from a proposal measure
qm (0, d0™), the move is accepted probability

W(de*)qm (0*7 de) }
’ ’/T(dO)Qm(OadO*) .

am(0,0") = min {1

For cases in which the move type does not change the dimeoktbe parameter,
the expression above reduces to the Metropolis-Hastingepéance probability,

oy — g [ PO 1y1:0)a(6710)
a(8,6°) = {1’ 2(0ly1n)a(0167) }

wherep(-|y1.,) denotes the target density of posterior density in our cHs@.is a
parameter vector of dimension; and@™ a parameter vector of dimensiemn,, with
my # ma, the transition betwee@ and@™ is done by generating; of dimension
ny from a densityy; (uq|6), andus of dimensiom from a densityys (u2|0*), such
thatm, + n1 = ma + na. Now, if J(m, m*) denotes the probability of a move of
typem* given that the chain is at, the acceptance probability is

0(60.0") — min{l p(0, maly1.n)J (M1, ma2)qa(u2]6) ‘6(0*,@)

(8, m1ly1.n)J (M2, m1)q1(u1]0) | 0(0,ur)

Problems

1. Consider the ARl) process. If|¢| < 1 the process is stationary and it
is possible to writey; = Z;’il ®er—j. Use this fact to prove thap; ~
N(0,v/(1 — ¢?)) and so, the likelihood function has the form (1.17).
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. Consider an AR) process with AR coefficienig = (¢1, ¢2)’. Show that the

process is stationary for parameter values lying in theoregi2 < ¢; < 2,
¢1 <1—¢oande; > ¢o — 1.

. Show that the general solution of a homogeneous differeqaation of the

form (2.8) has the form (2.9).

. Show that equations (2.35) and (2.36) hold by taking etgqueealues in (2.33)

and (2.34) with respect to the whole past history, ;.

. Consider the ARMA(1,1) model described by

yr = 0.95y;—1 + 0.8€6:—1 + €,

with ¢, ~ N (0, 1) for all ¢.

(a) Show that the one-step-ahead truncated forecast is @iy@if{’o =
0.95y; + 0.8¢; ™, with e, ~*° computed recursively viel > =y, —
0.95y;-1 — 0.8, 7%, forj =1,... t with ¢g~> = 0 andy, = 0.

(b) Show that the approximate mean square prediction eror i

(6 +0)*(1 - $** )
(1-¢?)

MSEy™ =wv |1+
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