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Part I

UNIVARIATE TIME SERIES





1 Notation, Definitions and Basic
Inference

Problem Areas, Graphical Displays and Objectives

1.1 The expressiontime series data, or time series, usually refers to a set of
observations collected sequentially in time. These observations could have been
collected at equally-spaced time points. In this case we usethe notationyt with
(t = . . . ,−1, 0, 1, 2, . . .), i.e., the set of observations is indexed byt, the time at
which each observation was taken. If the observations were not taken at equally-
spaced points then we use the notationyti

, with i = 1, 2, . . ., and so,(ti − ti−1) is
not necessarily equal to one.

A time series processis a stochastic process or a collection of random variables
yt indexed in time. Note thatyt will be used throughout the book to denote a random
variable or an actual realisation of the time series processat time t. We use the
notation{yt, t ∈ T }, or simply{yt}, to refer to the time series process. IfT is of
the form{ti, i ∈ N}, then the process is a discrete-time random process and ifT
is an interval in the real line, or a collection of intervals in the real line, then the
process is a continuous-time random process. In this framework, a time series data
setyt, (t = 1, . . . , n), also denoted byy1:n, is just a collection ofn equally-spaced
realisations of some time series process.

In many statistical models the assumption that the observations are realisations
of independent random variables is key. In contrast, time series analysis is con-
cerned with describing the dependence among the elements ofa sequence of random
variables.

At each timet, yt can be a scalar quantity, such as the total amount of rainfall
collected at a certain location in a given dayt, or it can be ak-dimensional vector
collectingk scalar quantities that were recorded simultaneously. For instance, if the
total amount of rainfall and the average temperature at a given location are measured
in day t, we havek = 2 scalar quantitiesy1,t andy2,t and so, at timet we have
a 2-dimensional vector of observationsyt = (y1,t, y2,t)

′. In general, fork scalar
quantities recorded simultaneously at timet we have a realisationyt of a vector
process{yt, t ∈ T }, with yt = (y1,t, . . . , yk,t)

′.
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Fig. 1.1 EEG series (units in millivolts)

1.2 Figure 1.1 displays a portion of a human electroencephalogram or EEG,
recorded on a patient’s scalp under certain electroconvulsive therapy (ECT) condi-
tions. ECT is an effective treatment for patients under major clinical depression
(Krystal et al., 1999). When ECT is applied to a patient, seizure activity appears
and can be recorded via electroencephalograms. The series corresponds to one of
19 EEG channels recorded simultaneously at different locations over the scalp. The
main objective in analysing this signal is the characterisation of the clinical effi-
cacy of ECT in terms of particular features that can be inferred from the recorded
EEG traces. The data are fluctuations in electrical potential taken at time inter-
vals of roughly one fortieth of a second (more precisely 256 Hz). For a more
detailed description of these data and a full statistical analysis see Westet al. (1999);
Krystalet al. (1999) and Pradoet al. (2001). From the time series analysis viewpoint,
the objective here is modelling the data in order to provide useful insight into the
underlying processes driving the multiple series during a seizure episode. Studying
the differences and commonalities among the 19 EEG channelsis also key. Univari-
ate time series models for each individual EEG series could be explored and used to
investigate relationships across the 19 channels. Multivariate time series analyses —
in which the observed series,yt, is a 19-dimensional vector whose elements are the
observed voltage levels measured simultaneously at the 19 scalp locations at each
time t — can also be considered.
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Fig. 1.2 Sections of the EEG trace displayed in Figure 1.1.

These EEG series display a quasi-periodic behaviour that changes dynamically in
time, as shown in Figure 1.2, where different portions of theEEG trace shown in
Figure 1.1 are displayed. In particular, it is clear that therelatively high frequency
components that appear initially are slowly decreasing towards the end of the series.
Any time series model used to describe these data should takeinto account their
non-stationary and quasi-periodic structure. We discuss various modelling alterna-
tives for these data in the subsequent chapters, including the class of time-varying
autoregressions or TVAR models and other multi-channel models.

1.3 Figure 1.3 shows the annual per capita GDP (gross domestic product) time
series for Austria, Canada, France, Germany, Greece, Italy, Sweden, UK and USA
during 1950 and 1983. Interest lies in the study of “periodic” behaviour of such
series in connection with understanding business cycles. Other goals of the analysis
include forecasting turning points and comparing characteristics of the series across
the national economies.

One of the main differences between any time series analysisof the GDP series
and any time series analysis of the EEG series, regardless ofthe type of models used
in such analyses, lies in the objectives. One of the goals in analysing the GDP data is
forecasting future outcomes of the series for the several countries given the observed
values. In the EEG study there is no interest in forecasting future values of the
series given the observed traces, instead the objective is finding an appropriate model
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Fig. 1.3 International annual GDP time series

that determines the structure of the series and its latent components. Univariate and
multivariate analyses of the GDP data can be considered.

1.4 Other objectives of time series analysis include monitoring a time series in
order to detect possible “on-line” changes. This is important for control purposes in
engineering, industrial and medical applications. For instance, consider a time series
generated from the process{yt} with

yt =

{

0.9yt−1 +ǫ
(1)
t , yt−1 > 1.5 (M1)

−0.3yt−1 +ǫ
(2)
t , yt−1 ≤ −1.5 (M2),

(1.1)

whereǫ(1)t ∼ N(0, v1), ǫ
(2)
t ∼ N(0, v2) andv1 = v2 = 1. Figure 1.4 (a) shows a

time series plot of 1,500 observations simulated accordingto (1.1). Figure 1.4 (b)
displays the values of an indicator variable,δt, such thatδt = 1 if yt was generated
fromM1 andδt = 2 if yt was generated fromM2. The model (1.1) belongs to the
class of so called threshold autoregressive (TAR) models, initially developed by H.
Tong (Tong, 1983; Tong, 1990). In particular, (1.1) is a TAR model with two regimes,
and so, it can be written in the following, more general, form

yt =

{

φ(1)yt−1 +ǫ
(1)
t , θ + yt−d > 0 (M1)

φ(2)yt−1 +ǫ
(2)
t , θ + yt−d ≤ 0 (M2),

(1.2)

with ǫ
(1)
t ∼ N(0, v1) and ǫ(2)t ∼ N(0, v2). These are non-linear models and the

interest lies in making inference aboutd, θ and the parametersφ(1), φ(2), v1 andv2.
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Fig. 1.4 (a): Simulated time seriesyt; (b) Indicator variableδt such thatδt = 1 if yt was a
sampled fromM1 andδt = 2 if yt was sampled fromM2.

Model (1.2) serves the purpose of illustrating, at least fora very simple case,
a situation that arises in many engineering applications, particularly in the area of
control theory. From a control theory viewpoint we can thinkof model (1.2) as a
bimodal process in which two scenarios of operation are handled by two control
modes (M1 andM2). In each mode the evolution is governed by a stochastic process.
Autoregressions of order one, or AR(1) models (a formal definition of this type
of processes is given later in this chapter), were chosen in this example, but more
sophisticated structures can be considered. The transitions between the modes occur
when the series crosses a specific threshold and so, we can talk about an internally-
triggered mode switch. In an externally-triggered mode switch the moves are defined
by external variables.

In terms of the goals of a time series analysis we can considertwo possible
scenarios. In many control settings where the transitions between modes occur in
response to controller’s actions, the current state is always known. In this setting
we can split the learning process in two: learning the stochastic models that control
each mode conditional on the fact that we know in which mode weare, i.e., inferring
φ(1), φ(2), v1 andv2, and learning the transition rule, that is, making inferences about
d and θ assuming we know the valuesδ1:n. In other control settings, where the
mode transitions do not occur in response to the controller’s actions, it is necessary to
simultaneously infer the parameters associated to the stochastic models that describe
each mode and the transition rule. In this case we want to estimateφ(1), φ(2), v1, v2, θ
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andd conditioning only on the observed datay1:n. Depending on the application it
may also be necessary to do the learning from the time series sequentially in time
(see Chapter 5).

1.5 Finally, we may use time series techniques to model serial dependences
between parameters of a given model with additional structure. For example, we
could have a linear regression model of the formyt = β0 + β1xt + ǫt, for whichǫt
does not exhibit the usual independent structureǫt ∼ N(0, v) for all t but instead,
the probability distribution ofǫt depends onǫt−1, . . . , ǫt−k.

Stochastic Processes and Stationarity

Many time series models are based on the assumption of stationarity. Intuitively,
a stationary time series process is a process whose behaviour does not depend on
when we start to observe it. In other words, different sections of the series will look
roughly the same at intervals of the same length. Here we provide two widely used
definitions of stationarity.

1.6 A time series process{yt, t ∈ T } is completelyor strongly stationaryif, for
any sequence of timest1, t2, . . . , tn, and any lagk, the probability distribution of
(yt1 , . . . , ytn

)′ is identical to the probability distribution of(yt1+k, . . . , ytn+k)′.

1.7 In practice it is very difficult to verify that a process is strongly stationary and
so, the notion ofweakor second order stationarityarises. A process is said to be
weakly stationary, or second order stationary if, for any sequence of timest1, . . . , tn,
and any lagk, all the first and second joint moments of(yt1 , . . . , ytn

)′ exist and are
equal to the first and second joint moments of(yt1+k, . . . , ytn+k)′. If {yt} is second
order stationary we have that

E(yt) = µ, V ar(yt) = v, Cov(yt, ys) = γ(s− t), (1.3)

whereµ, v are constant, independent oft andγ(s − t) is also independent oft and
s, since it only depends on the length of the interval between time points. It is also
possible to define stationarity up to orderm in terms of them joint moments, see for
example Priestley (1994).

If the first two moments exist, complete stationarity implies second order sta-
tionarity, but the converse is not necessarily true. If{yt} is a Gaussian process,
i.e., if for any sequence of time pointst1, . . . , tn the vector(yt1 , . . . , ytn

)′ follows a
multivariate normal distribution, strong and weak stationarity are equivalent.
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Exploratory Analysis: Auto-Correlation and Cross-Correl ation

The first step in any statistical analysis usually consists on performing a descriptive
study of the data in order to summarise their main characteristic features. One of
the most widely used descriptive techniques in time series data analysis is that of
exploring the correlation patterns displayed by a series, or a couple of series, at
different time points. This is done by plotting the sample auto-correlation and cross-
correlation values, which are estimates of the auto-correlation and cross-correlation
functions.

1.8 We begin by defining the concepts of auto-covariance, auto-correlation and
cross-correlation functions. We then show how to estimate these functions from data.
Let {yt, t ∈ T } be a time series process. The auto-covariance function of{yt} is
defined as follows

γ(s, t) = Cov{yt, ys} = E{(yt − µt)(ys − µs)}, (1.4)

for all s, t, with µt = E(yt). For stationary processesµt = µ for all t and the
covariance function depends on|s − t| only. In this case we can write the auto-
covariance as a function of a particular time lagk

γ(k) = Cov{yt, yt−k}. (1.5)

The auto-correlation function (ACF) is then given by

ρ(s, t) =
γ(s, t)

√

γ(s, s)γ(t, t)
. (1.6)

For stationary processes, the ACF can be written in terms of alagk

ρ(k) =
γ(k)

γ(0)
. (1.7)

The auto-correlation function inherits the properties of any correlation function. In
this particular case the ACF is a measure of the linear dependence between a value
of the time series process at timet and past or future values of such process.ρ(k)
always takes values in the interval[−1, 1]. In addition,ρ(k) = ρ(−k) and if yt and
yt−k are independentρ(k) = 0.

It is also possible to define the cross-covariance and cross-correlation functions
of two univariate time series. If{yt} and{zt} are two time series processes, the
cross-covariance is defined as

γy,z(s, t) = E{(yt − µyt
)(zs − µzs

)}, (1.8)
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for all s, t and the cross-correlation is then given by

ρy,z(s, t) =
γy,z(s, t)

√

γy(s, s)γz(t, t)
. (1.9)

If both processes are stationary we can again write the cross-covariance and cross-
correlation functions in terms of a lag valuek. This is

γy,z(k) = E{(yt − µy)(zt−k − µz)}, (1.10)

and

ρy,z(k) =
γy,z(k)

√

γy(0)γz(0)
. (1.11)

Example 1.8.1 White Noise.

Consider a time series process such thatyt ∼ N(0, v) for all t. In this caseγ(0) = v,
γ(k) = 0 for all k 6= 0, ρ(0) = 1 andρ(k) = 0 for all k 6= 0.

Example 1.8.2 First order autoregression or AR(1).

In Chapter 2 we formally define and study the properties of general autoregressions
of orderp, or AR(p) processes. Here, we illustrate some properties of the simplest
AR process, the AR(1). Consider a time series process such thatyt = φyt−1 + ǫt
with ǫt ∼ N(0, v) for all t. It is possible to show thatγ(k) = φ|k|γ(0) for k =
0,±1,±2, . . ., with γ(0) = v

(1−φ2) , andρ(k) = φ|k| for k = 0,±1,±2, . . . Figure
1.5 displays the auto-correlation functions for AR(1) processes with parameters
φ = 0.9, φ = −0.9 andφ = 0.3, for lag values0, 1, . . . , 50. For negative values of
φ the ACF has an oscillatory behaviour. In addition, the rate of decay of the ACF is
a function ofφ. The closer|φ| gets to the unity the lower the rate of decay is (e.g.,
compare the ACFs forφ = 0.9 andφ = 0.3). It is also obvious from the form of
the ACF that this is an explosive function when|φ| > 1 and is equal to unity for
all k whenφ = 1. This is related to the characterisation of stationarity inAR(1)
processes. An AR(1) process is stationary if and only if|φ| < 1. The stationary
condition can also be written as a function of the characteristic root of the process.
An AR(1) is stationary if and only if the root of the characteristic polynomialu, such
thatΦ(u) = 0, with Φ(u) = 1 − φu, lies outside the unit circle, and this happens if
and only if|φ| < 1.

1.9 We now show how to estimate the auto-covariance, auto-correlation, cross-
covariance and cross-correlation functions from data. Assume we have datay1:n.
The usual estimate of the auto-covariance function is the sample auto-covariance,
which, fork > 0, is given by

γ̂(k) =
1

n

n−k
∑

t=1

(yt − ȳ)(yt+k − ȳ), (1.12)
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Fig. 1.5 Auto-correlation functions for AR processes with parameters 0.9, -0.9 and 0.3

whereȳ =
∑n

t=1 yt/n is the sample mean. We can then obtain the estimates of the

auto-correlation function aŝρ(k) = γ̂(k)
γ̂(0) , for k = 0, 1, . . .

Similarly, estimates of the cross-covariance and cross-correlation functions can
be obtained. The sample cross-covariance is given by

γ̂y,z(k) =
1

n

n−k
∑

t=1

(yt − ȳ)(zt+k − z̄), (1.13)

and so, the sample cross-correlation is obtained asρ̂y,z(k) = γ̂y,z(k)/
√

γ̂y(0)γ̂z(0).

Figure 1.6 displays the sample auto-correlation functionsof simulated AR(1)
processes with parametersφ = 0.9, φ = −0.9 andφ = 0.3, respectively. The
sample ACFs were computed based on a sample ofn = 200 data points. For
φ = 0.9 andφ = 0.3 the corresponding sample ACFs decay as a function of the lag.
The oscillatory form of the ACF for the process withφ = −0.9 is captured by the
corresponding sample ACF.

The estimates given in (1.12) and (1.13) are not unbiased estimates of the auto-
covariance and cross-covariance functions. For results related to the sample distri-
bution of the sample auto-correlation and sample cross-correlation functions see for
example Shumway and Stoffer (2000).
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Fig. 1.6 Sample auto-correlation functions for AR processes with parameters 0.9, -0.9 and
0.3 (graphs (a), (b) and (c), respectively)

Exploratory Analysis: Smoothing and Differencing

As mentioned before, many time series models are built underthe stationarity as-
sumption. Several descriptive techniques have been developed to study the stationary
properties of a time series so that an appropriate model can then be applied to the
data. For instance, looking at the sample auto-correlationfunction may be helpful in
identifying some features of the data. However, in many practical scenarios the data
are realisations from one or several non-stationary processes. In this case, methods
that aim to eliminate the non-stationary components are often used. The idea is to
separate the non-stationary components from the stationary ones so that the later
can be carefully studied via traditional time series modelssuch as, for example, the
ARMA (autoregressive-moving-average)models that will bediscussed in subsequent
chapters.

In this Section we enumerate some commonly used methods for extracting the non-
stationary componentsof a time series. We do not attempt to providea comprehensive
list of methods, since this would be a nearly impossible taskbeyond the scope of this
book. Instead, we just list and summarise a few of them. We view these techniques
as purely descriptive. We believe that if the data display non-stationary components,
such components should be explicitly included in any proposed model.

Several descriptive time series methods are based on the notion of smoothing
the data, this is, decomposing the series as a sum of two components: a so called
“smooth” component, plus another component that includes all the features of the data
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that are left unexplained by the smooth component. This is similar to the “signal plus
noise” concept used in signal processing. The main difficulty with this approach lies
in deciding which features of the data are part of the signal or the smooth component
and which ones are part of the noise.

1.10 One way to do smoothing is via moving averages (see Kendallet al., 1983;
Kendall and Ord, 1990; Chatfield, 1996 and Diggle, 1990 for detailed discussions
and examples). If we have datay1:n, we can smooth them by applying an operation
of the form

zt =

p
∑

j=−q

ajyt+j , t = q + 1, . . . , n− p, (1.14)

where theaj ’s are weights such that
∑p

j=−q aj = 1. It is generally assumed that
p = q, aj ≥ 0 for all j andaj = a−j . The order of the moving average in this case
is 2p+ 1. The first question that arises when applying a moving average to a series
is how to choosep and the weights. The simplest alternative is choosing a low value
of p and equal weights. The higher the value ofp, the smootherzt is going to be.
Other alternatives include successively applying a simplemoving average with equal
weights or choosing the weights in such a way that a particular feature of the data
is highlighted. So, for example, if a given time series recorded monthly displays a
trend plus a yearly cycle, choosing a moving average withp = 6, a6 = a−6 = 1/24
andaj = 1/12 for j = 0,±1, . . . ,±5 would diminish the impact of the periodic
component and therefore, emphasising the trend (see Diggle, 1990 for an example).

Figure 1.7 (a) shows monthly values of the Souther Oscillation Index (SOI) during
1950-1995. This series consists of 540 observations of the SOI, computed as the
difference of the departure from the long-term monthly meansea level pressures
at Tahiti in the South Pacific and Darwin in Northern Australia. The index is
one measure of the so called "El Niño-Southern Oscillation" – an event of critical
importance and interest in climatological studies in recent decades. The fact that
most of the observations in the last part of the series take negative values is related
to a recent warming in the tropical Pacific. A key question of interest is to determine
just how unusual this event is, and if it can reasonably be explained by standard
"stationary" time series models, or requires models that include drifts/trends that
may be related to global climatic change. Figures 1.7 (b) and(c) show two smoothed
series obtained via moving averages of orders 3 and 9, respectively, with equal
weights. As explained before, we can see that the higher the order of the moving
average the smoother is the resulting series.

1.11 Other ways to smooth a time series include fitting a linear regression to
remove a trend or, more generally, fitting a polynomial regression; fitting a harmonic
regression to remove periodic components and performing kernel smoothing or spline
smoothing.
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Fig. 1.7 (a): Southern oscillation index (SOI) time series; (b): Smoothed series obtained
using a moving average of order 3 with equal weights; (c): Smoothed series obtained using a
moving average of order 9 with equal weights

Smoothing by polynomial regression consists on fitting a polynomial to the series.
In other words, we want to estimate the parameters of the model

yt = β0 + β1t+ . . .+ βpt
p + ǫt,

whereǫt is usually assumed as a sequence of zero mean, independent Gaussian
random variables. Similarly, fitting harmonic regressionsprovides a way to remove
cycles from a time series. So, if we want to remove periodic components with
frequenciesw1, . . . , wp, we need to estimatea1, b1, . . . , ap, bp in the model

yt = a1 cos(2πw1t) + b1 sin(2πw1t) + . . .+

ap cos(2πwpt) + bp cos(2πwpt) + ǫt.

In both cases the smoothed series would then be obtained aszt = yt − ŷt, with
ŷt = β̂0 + β̂1t + . . . + β̂pt

p, and ŷt = â1 cos(2πw1t) + b̂1 sin(2πw1t) + . . . +

âp cos(2πwpt)+ b̂p cos(2πwpt), respectively, wherêβi, âi andb̂i are point estimates
of the parameters. Usuallŷβi andâi, b̂i are obtained by least squares estimation.
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In kernel smoothing a smoothed versionzt of the original seriesyt is obtained as
follows

zt =

n
∑

i=1

wt(i)yt, wi(t) = K

(

t− i

b

)

/

n
∑

j=1

K

(

t− j

b

)

,

whereK(·) is a kernel function, such as a normal kernel. The parameterb is a
bandwidth. The larger the value ofb, the smootherzt is.

Cubic splines and smoothing splines are also commonly used smoothing tech-
niques. See Shumway and Stoffer (2000) for details and illustrations on kernel and
spline smoothing.

1.12 Another way to smooth a time series is by taking its differences. Differencing
provides a way to remove trends. The first difference of a seriesyt is defined in terms
of an operatorD that produces the transformationDyt = yt − yt−1. Higher order
differences are defined by successively applying the operator D. Differences can
also be defined in terms of the back shift operatorB, with Byt = yt−1 and so,
Dyt = (1 −B)yt. Higher order differences can be written asDdyt = (1 −B)dyt.

1.13 In connection with the methods presented in this Section, itis worth mention-
ing that wavelet decompositions have been widely used in recent years for smooth-
ing time series. Vidakovic (1999) presents a statistical approach to modelling by
wavelets. Wavelets are bases functions that are used to represent other functions.
They are the analogous to the sines and cosines in the Fouriertransformation. One of
the advantages of using wavelets basis, as opposed to Fourier representations, is that
they are localised in frequency and time, and so, they are suitable for dealing with
non-stationary signals that display jumps and other abruptchanges.

A Primer on Likelihood and Bayesian Inference

Assume that we have collectedn observations,y1:n, of a scalar quantity over time.
Suppose that for each observationyt we have a probability distribution that can be
written as a function of some parameter, or collection of parameters, namelyθ, in
such a way that the dependence ofyt on θ is described in terms of a probability
density functionp(yt|θ). If we think of p(yt|θ) as a function ofθ, rather than a
function ofyt, we refer to it as the likelihood function. Using Bayes’ theorem it
is possible to obtain the posterior density function ofθ given the observationyt,
p(θ|yt), as the product of the likelihood and the prior densityp(θ), i.e.,

p(θ|yt) =
p(θ)p(yt|θ)

p(yt)
, (1.15)
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with p(yt) =
∫

p(θ)p(yt|θ)dθ. p(yt) defines the so called predictive density func-
tion. The prior distribution offers a way to incorporate ourprior beliefs aboutθ and
Bayes’ theorem provides the way to update such beliefs afterobserving the data.

Bayes’ theorem can also be used in a sequential way. So, before collecting any
data, the prior beliefs aboutθ are expressed in a probabilistic form viap(θ). Assume
that we then collect our first observation at timet= 1,y1, and we obtainp(θ|y1) using
Bayes’ theorem. Oncey2 is observed we can obtainp(θ|y1:2) using Bayes’ theorem
asp(θ|y1:2) ∝ p(θ)p(y1:2|θ). Now, if y1 andy2 are conditionally independent onθ
we can writep(θ|y1:2) ∝ p(θ|y1)p(y2|θ), i.e., the posterior ofθ giveny1 becomes
a prior distribution before observingy2. Similarly, p(θ|y1:n) can be obtained in
a sequential way, if all the observations are independent. However, in time series
analysis the observations are not independent. For example, a common assumption
is that each observation at timet depends only onθ and the observation taken at time
t− 1. In this case we have

p(θ|y1:n) ∝ p(θ)p(y1|θ)
n
∏

t=2

p(yt|yt−1,θ). (1.16)

General models in whichyt depends on an arbitrary number of past observations
will be studied in subsequent chapters. We now consider an example in which the
posterior distribution has the form (1.16).

Example 1.13.1The AR(1) model.

We consider again the AR(1) process. The model parameters in this case are given by
θ = (φ, v)′. Now, for each timet > 1, the conditional likelihood isp(yt|yt−1,θ) =
N(yt|φyt−1, v). In addition, it can be shown thaty1 ∼ N(0, v/(1 − φ2)) (see
Problem (1) in Chapter 2) and so, the likelihood in this case is

p(y1:n|θ) =
(1 − φ2)1/2

(2πv)n/2
exp

{

−Q
∗(φ)

2v

}

, (1.17)

with

Q∗(φ) = y2
1(1 − φ2) +

n
∑

t=2

(yt − φyt−1)
2. (1.18)

The posterior density is obtained via Bayes’ rule and so

p(θ|y1:n) ∝ p(θ)
(1 − φ2)1/2

(2πv)n/2
exp

{−Q∗(φ)

2v

}

.

We can also use the conditional likelihoodp(y2:n|θ, y1) as an approximation to the
likelihood (see Boxet al., 1994 A7.4 for a justification), which leads to the following
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posterior density

p(θ|y1:n) ∝ p(θ)v−(n−1)/2exp

{−Q(φ)

2v

}

, (1.19)

with Q(φ) =
∑n

t=2(yt − φyt−1)
2. Several choices ofp(θ) can be considered and

will be discussed later. In particular, it is common to assume a prior structure such
thatp(θ) = p(v)p(φ|v), or p(θ) = p(v)p(φ).

Another important class of time series models is one in whichparameters are
indexed in time. In this case each observation is related to aparameter, or a set of
parameters, sayθt, that evolves over time. The so called class of Dynamic Linear
Models (DLMs) considered in Chapter 4 deals with models of this type. In this
framework it is necessary to define a process that describes the evolution ofθt over
time. As an example, consider the time-varying AR model of order one, or TVAR(1),
given by

yt = φtyt−1 + ǫt,

φt = φt−1 + νt,

with ǫt andνt independent in time and mutually independent and withǫt ∼ N(0, v)
and νt ∼ N(0, w). Some distributions of interest are the posteriors at timet,
p(φt|y1:t) andp(v|y1:t), the filtering or smoothing distributionsp(φt|y1:n), and the
m-steps ahead forecast distributionp(yt+m|y1:t). Details on how to find these
distributions for rather general DLMs are given in Chapter 4.

1.14 ML, MAP and LS estimation. It is possible to obtain point estimates of
the model parameters by maximising the likelihood functionor the full posterior
distribution. A variety of methods and algorithms have beendeveloped to achieve
this goal. We briefly discuss some of these methods. In addition, we illustrate how
these methods work in the simple AR(1) case.

A point estimate ofθ, θ̂, can be obtained by maximising the likelihood function
p(y1:n|θ) with respect toθ. In this case we use the notationθ̂ = θML . Similarly, if
instead of maximising the likelihood function we maximise the posterior distribution
p(θ|y1:n), we obtain the maximum a posteriori estimate forθ, θ̂ = θMAP.

Usually, the likelihood function and the posterior distribution are complicated
non-linear functions ofθ and so, it is necessary to use methods such as the Newton-
Raphson algorithm or the scoring method to obtain the maximum likelihood estimator
(MLE) or the maximum a posteriori (MAP) estimator. In general, the Newton-
Raphson algorithm can be summarised as follows. Letg(θ) be the function of
θ = (θ1, . . . , θk)′ that we want to maximise and̂θ be the maximum. At iterationm
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of the Newton-Raphson algorithm we obtainθ(m), an approximation tôθ, as follows

θ(m) = θ(m−1) −
[

g′′(θ(m−1))
]−1

×
[

g′(θ(m−1))
]

, (1.20)

whereg′(θ) andg′′(θ) denote the first and second order partial derivatives of the

functiong, i.e. g′(θ) is ak-dimensional vectorg′(θ) =
(

∂g(θ)
∂θ1

, . . . , ∂g(θ)
∂θk

)′

, and

g′′(θ) is ak×kmatrix of second order partial derivatives whoseij-th element is given

by
[

∂g2(θ)
∂θi∂θj

]

, for i, j = 1, . . . , k. Under certain conditions this algorithm produces a

sequenceθ(1),θ(2), . . . , that will converge tôθ. In particular, it is important to begin
with a good starting valueθ(0), since the algorithm does not necessarily converge for
values in regions where−g′′(·) is not positive definite. An alternative method is the
scoring method, which involves replacingg′′(θ) in (1.20) by the matrix of expected
valuesE(g′′(θ)).

In many practical scenarios, specially when dealing with models that have very
many parameters, it is not useful to summarise the inferences in terms of the joint
posterior mode. In such cases it is often interesting and appropriate to summarise
posterior inference in terms of the marginal posterior modes, this is, the posterior
modes for subsets of model parameters. Let us say that we can partition our model
parameters in two sets,θ1 andθ2 so thatθ = (θ′1,θ

′
2)

′ and assume we are inter-
ested inp(θ2|y1:n). The EM (Expectation-Maximisation) algorithm proposed in
Dempsteret al. (1977) is useful when dealing with models for whichp(θ2|y1:n) is
hard to maximise directly but it is relatively easy to work with p(θ1|θ2, y1:n) and
p(θ2|θ1, y1:n). The EM algorithm can be described as follows

1. Start with some initial valueθ(0)
2 .

2. For i=1,2,. . .

• ComputeE(i−1)[log p(θ1,θ2|y1:n)] given by the expression
∫

log p(θ1,θ2|y1:n)p(θ1|θ(i−1)
2 , y1:n)dθ1. (1.21)

This is the E-step.

• Setθ(i)
2 to the value that maximises (1.21). This is the M-step.

At each iteration of the EM algorithmp(θ2|y1:n) should increase and so, the algorithm
should converge to the mode. Some extensions of the EM algorithm include the
ECM (expectation-conditional-maximisation)algorithm,ECME (variant of the ECM
in which either the log-posterior density or the expected log-posterior density is
maximised) and SEM (sumplemented EM) algorithms (see Gelman et al., 2004 and
references therein) and stochastic versions of the EM algorithm such as the MCEM
(Wei and Tanner, 1990).
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Fig. 1.8 Conditional and unconditional likelihoods (solid and dotted lines respectively) for
100 simulated observations

Example 1.14.1ML, MAP and LS estimators for the AR(1) model.
Consider an AR(1) such thatyt = φyt−1 + ǫt, with ǫt ∼ N(0, 1). In this case
v = 1 and θ = φ. The conditional MLE is found by maximising the func-
tion exp{ − Q(φ)

2 } or equivalently, by minimisingQ(φ). Therefore, we obtain

φ̂ = φML =
∑n

t=2 ytyt−1/
∑n

t=2 y
2
t−1. Similarly, the MLE for the unconditional

likelihood function is obtained by maximisingp(y1:n|φ), or equivalently, by min-
imising the expression

−0.5[log(1 − φ2) +Q∗(φ)].

Thus, the Newton-Raphson or scoring methods can be used to find φ̂. As an illustra-
tion, the conditional and unconditional ML estimators werefound for 100 samples
from an AR(1) with φ = 0.9. Figure 1.8 shows a graph with the conditional and un-
conditional log-likelihood functions (solid and dotted lines respectively). The points
correspond to the maximum likelihood estimators withφ̂ = 0.9069 andφ̂ = 0.8979
being the MLEs for the conditional and unconditional likelihoods, respectively. For
the unconditional case, a Newton-Raphson algorithm was used to find the maximum.
The algorithm converged after 5 iterations with a starting value of 0.1.

Figure 1.9 shows the form of the log-posterior distributionof φ under Gaussian
priors of the formφ ∼ N(µ, c), for µ = 0, c = 1.0 (left panel) andc = 0.01 (right
panel). Note that this prior does not impose any restrictionon φ and so, it gives
non-negative probability to values ofφ that lie in the non-stationary region. It is
possible to choose priors onφ whose support is the stationary region. This will be
considered in Chapter 2. Figure 1.9 illustrates the effect of the prior on the MAP
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Fig. 1.9 Conditional and unconditional posteriors (solid and dotted lines respectively) with
priors of the formφ ∼ N(0, c), for c = 1 (left panel) andc = 0.01 (right panel).

estimators. For a priorφ ∼ N(0, 1), the MAP estimators arêφMAP = 0.9051

andφ̂MAP = 0.8963 for the conditional and unconditional likelihoods, respectively.
When a smaller value ofc is considered, or in other words, when the prior distribution
is more concentrated around zero, then the MAP estimates shift towards the prior
mean. For a priorφ ∼ N(0, 0.01), the MAP estimators arêφMAP = 0.7588 and

φ̂MAP = 0.7550 for the conditional and unconditional likelihoods, respectively.
Again, the MAP estimators for the unconditional likelihoods were found using a
Newton-Raphson algorithm.

It would have also been possible to obtain the least squares estimators for the
conditional and unconditional likelihoods. For the conditional case, the least squares
estimator, or LSE, is obtained by minimising the conditional sum of squaresQ(φ),
and so, in this caseφMLE = φLSE. In the unconditional case the LSE is found by
minimising the unconditional sum of squaresQ∗(φ) and so, the LSE and the MLE
do not coincide.

1.15 Traditional Least Squares. Likelihood and Bayesian methods for fitting
linear autoregressions rely on very standard methods of linear regression analysis
therefore, some review of the central ideas and results in regression is in order and
given here. This introduces notation and terminology that will be used throughout
the book.

A linear model with a univariate response variable andp > 0 regressor variables
(otherwise predictors or covariates) has the form

yi = f′iβ + ǫi
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for i = 1, 2, . . . , whereyi is theith observation on the response variable, and has
corresponding values of the regressors in the design vectorfi = (fi1, . . . , fip)

′.
The design vectors are assumed known and fixed prior to observing corresponding
responses. The error termsǫi are assumed independent and normal, distributed as
N(ǫi|0, v) with some variancev. The regression parameter vectorβ = (β1, . . . , βp)

′

is to be estimated, along with the error variance. The model for an observed set ofn
responsesy = (y1, . . . , yn)′ is

y = F′β + ǫ,

whereF is the knownp× n design matrix withith columnfi andǫ = (ǫ1, . . . , ǫn)′,
ǫ ∼ N(ǫ|0, vIn), with In the n × n identity matrix. This defines the sampling
distribution

p(y|F,β, v) =
n
∏

i=1

N(yi|f′iβ, v) = (2πv)−n/2exp( −Q(y,β)/2v),

whereQ(y,β) = (y − F′β)′(y − F′β) =
∑n

i=1(yi − f′iβ)2. Observingy this gives
a likelihood function for(β, v). We can write

Q(y,β) = (β − β̂)′FF′(β − β̂) +R

whereβ̂ = (FF′)−1Fy andR = (y − F′β̂)′(y − F′β̂). This assumes thatF is of
full rank p, otherwise an appropriate linear transformation of the design vectors will
reduce to a full rank matrix and the model simply reduces in dimension. Herêβ is
the MLE ofβ and the residual sum of squaresR gives the MLE ofv asR/n; a more
usual estimate ofv is s2 = R/(n − p), with n − p being the associated degrees of
freedom.

1.16 Reference Bayesian Analysis.Reference Bayesian analysis is based on the
traditional reference (improper) priorp(β, v) ∝ 1/v. The corresponding posterior
density isp(β, v|y,F) ∝ p(y|F,β, v)/v and has the following features.

• The marginal posterior forβ is multivariate T withn − p degrees of freedom,
has modêβ and density

p(β|y,F) = c(n, p)|FF′|1/2{1 + (β − β̂)′FF′(β − β̂)/(n− p)s2}−n/2

with c(n, p) = Γ(n/2)/[Γ((n− p)/2)(sπ(n − p))p/2]. For a largen, the posterior
is roughlyN(β|β̂, s2(FF′)−1). Note also that, given any assumed value ofv, the
conditional posterior forβ is exactly normal, namelyN(β|β̂, v(FF′)−1).

• The total sum of squares of the responsesy′y =
∑n

i=1 y
2
i factorises asy′y =

R+ β̂
′
FF′β̂. The sum of squares explained by the regression isy′y−R = β̂

′
FF′β̂;

this is also called the fitted sum of squares, and a larger value implies a smaller
residual sum of squares and, in this sense, a closer fit to the data.
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• In connection with model comparisons and related issues, a key quantity is the
value of the marginal density of the response data (conditional on the model form,F
and the adopted reference prior) at the observed value ofy, namely

p(y|F) =

∫

p(y|β̂, v)/v dβdv = c
Γ((n− p)/2)

π(n−p)/2
|FF′|−1/2R−(n−p)/2,

for some constantc that does not depend onF or p. This can also be written as

p(y|F) ∝ Γ((n− p)/2)

π(n−p)/2
|FF′|−1/2{1 − β̂′

FF′β̂/(y′y)}(p−n)/2.

For largen, the term{1− β̂′
FF′β̂/(y′y)}(p−n)/2 in the above expression is approx-

imatelyexp(β̂
′
FF′β/2r) wherer = y′y/(n− p).

Some additional comments:

• For models with the same number of parameters that differ only throughF, the
corresponding observed data densities will tend to be larger for those models with

larger values of the explained sum of squaresβ̂
′
FF′β̂ (though the determinant term

plays a role too). Otherwise,p(y|F) also depends on the parameter dimensionp.

• TreatingF as a “parameter” of the model, and making this explicit in themodel,
we see thatp(y|F) is the likelihood function forF from the data (in this reference
analysis).

• Orthogonal regression.If FF′ = kIp for somek, then everything simplifies.
Write f∗j for the jth column ofF′, andβj for the corresponding component of the

parameter vectorβ. Thenβ̂ = (β̂1, . . . , β̂p)
′ where eacĥβj is the individual MLE

from a model onf∗j alone, i.e.y = f∗jβj + ǫ, and the elements ofβ are uncorrelated
under the posterior T distribution. The explained sum of squares partitions into a

sum of individual pieces too, namelŷβ
′
FF′β̂ =

∑p
j=1 f∗

′

j f∗j β̂
2
j , and so calculations

as well as interpretations are easy.

Example 1.16.1Reference analysis in the AR(1) model.

For the conditional likelihood, the reference prior is given by p(φ, v) ∝ 1/v. The
MLE for φ is φML =

∑n
t=2 yt−1yt/

∑n−1
t=1 y

2
t . Under the reference priorφMAP =

φML . The residual sum of squares is given by

R =
n
∑

t=2

y2
t − (

∑n
t=2 ytyt−1)

2

∑n−1
t=1 y

2
t

,

and so,s2 = R/(n − 2) estimatesv. The marginal posterior distribution ofφ is a
univariatet distribution withn− 2 degrees of freedom, centered atφML with scale
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Fig. 1.10 (a)p(φ|y); (b) p(v|y).

s2(FF′)−1, i.e.,

(φ|y,F) ∼ t(n−2)







∑n
t=2 yt−1yt
∑n−1

t=1 y
2
t

,

∑n
t=2 y

2
t

∑n
t=2 y

2
t−1 − (

∑n
t=2 ytyt−1)

2

(

∑n−1
t=1 y

2
t

)2

(n− 2)






.

Finally, the posterior forv is a scaled inverse chi-squared withn − 2 degrees of
freedom and scales2, Inv−χ2(v|n−2, s2), or equivalently, an inverse gamma with
parameters(n− 2)/2 and(n− 2)s2/2, i.e. IG(v|(n − 2)/2, (n− 2)s2/2).

As an illustration, a reference analysis was performed for atime series of 500
points simulated from an AR(1) model withφ = 0.9 andv = 100. Figures 1.10 (a)
and (b) display the marginal posterior densities of(φ|y) and(v|y) based on a sample
of 5,000 observations from the joint posterior. The circlesin the histogram indicate
φML ands2 respectively.

1.17 Conjugate Bayesian Analysis.Letp(yt|θ) be a likelihood function. A class
Π of prior distributions forms aconjugate familyif the posteriorp(θ|yt) belongs to
the classΠ for every priorp(θ) in Π.

Consider again the modely = F′β + ǫ, with F a knownp× n design matrix and
ǫ ∼ N(ǫ|0, vIn). In a conjugate Bayesian analysis for this model priors of the form

p(β, v) = p(β|v)p(v) = N(β|m0, vC0) × IG(v|n0/2, d0/2), (1.22)

are taken, withm0 a vector of dimensionp andC0 a p × p matrix. Both,m0 and
C0 are known quantities. The corresponding posterior distribution has the following
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form

p(β, v|F, y) ∝ v−[(p+n+n0)/2+1] ×

exp

{

− (β − m0)
′C−1

0 (β − m0) + (y − F′β)′(y − F′β) + d0

2v

}

.

This posterior distribution has the following features:

• (y|F, v) ∼ N(F′m0, v(F′C0F + In)).

• The posterior forβ conditional onv is Gaussian,(β|y,F, v) ∼ N(m, vC), with

m = m0 + C0F[F′C0F + In]−1(y − F′m0)

C = C0 − C0F[F′C0F + In]−1F′C0,

or, defininge= y−F′m0,Q = F′C0F+In andA = C0FQ−1 we have,m = m0+Ae
andC = C0 − AQA′.

• (v|F, y) ∼ IG(n∗/2, d∗/2), with n∗ = n+ n0 and

d∗ = (y − F′m0)
′Q−1(y − F′m0) + d0.

• (β|y,F) ∼ Tn∗ [m, d∗C/n∗]

Example 1.17.1Conjugate analysis in the AR(1) model.
Assume we choose a prior of the formφ|v ∼ N(0, v) andv ∼ IG(n0/2, d0/2), with
n0 andd0 known. Then,p(φ|F, y, v) ∼ N(m, vC) with

m =

∑n−1
t=1 ytyt+1

∑n−1
t=1 y

2
t + 1

, C =
1

1 +
∑n−1

t=1 y
2
t

,

(v|F, y) ∼ IG(n∗/2, d∗/2) with n∗ = n+ n0 − 1 and

d∗ =

n
∑

t=2

y2
t −

(

∑n−1
t=1 ytyt+1

)2

∑n−1
t=1 y

2
t + 1

+ d0.

1.18 Non-conjugate Bayesian analysis.For the general regression model the
reference and conjugate priors produce joint posterior distributions that have closed
analytical forms. However, in many scenarios it is either not possible or not desirable
to work with a conjugate prior or with a prior that leads to a posterior distribution that
can be written in analytical form. In these cases it might be possible to use analytical
or numerical approximations to the posterior. Another alternative consists on sum-
marising the inference by obtaining random draws from the posterior distribution.
Sometimes it is possible to obtain such draws by direct simulation, but often this is
not the case and so, methods such as Markov chain Monte Carlo (MCMC) are used.

Consider for example the AR(1) model under the full likelihood (1.17). No
conjugate prior is available in this case. Furthermore, a prior of the formp(φ, v) ∝
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1/v does not produce a posterior distribution in closed form. Infact, the joint
posterior distribution is such that

p(φ, v|y1:n) ∝ v−(n/2+1)(1 − φ2)1/2exp

{−Q∗(φ)

2v

}

. (1.23)

Several approaches could be considered to summarise this posterior distribution.
For instance, we could take a normal approximation top(φ, v|y1:n) centered at the
ML or MAP estimates of(φ, v). In general, the normal approximation to a posterior
distributionp(θ|y1:n) is given by

p(θ|y1:n) ≈ N(θ̂, v(θ̂)), (1.24)

with θ̂ = θMAP andv(θ) = [− log p′′(θ|y1:n)]−1.

Alternatively, it is possible to use iterative MCMC methodsto obtain samples from
p(φ, v|y1:n). We summarise two of the most widely used MCMC methods below:
the Metropolis algorithm and the Gibbs sampler. For full consideration of MCMC
methods see for example Gamerman (1997).

Posterior Sampling

1.19 The Metropolis-Hastings algorithm. Assume that our target posterior dis-
tribution,p(θ|y1:n), can be computed up to a normalising constant. The Metropolis
algorithm (Metropoliset al., 1953; Hastings, 1970) creates a sequence of random
drawsθ1,θ2, . . . , whose distributions converge to the target distribution. Each se-
quence can be considered as a random walk whose stationary distribution isp(θ|y1:n).
The sampling algorithm can be summarised as follows:

• Draw a starting pointθ0 with p(θ0|y1:n) > 0 from a starting distributionp0(θ).

• For i = 1, 2, . . .

1. Sample a candidateθ∗ from a jumping distributionJi(θ
∗|θi−1). If the distri-

butionJi is symmetric, i.e., ifJi(θa|θb) = Ji(θb|θa) for all θa,θb andi, then
we refer to the algorithm as the Metropolis algorithm. IfJi is not symmetric
we refer to the algorithm as the Metropolis-Hastings algorithm.

2. Compute the importance ratio

r =
p(θ∗|y1:n)/Ji(θ

∗|θi−1)

p(θi−1|y1:n)/Ji(θ
i−1|θ∗)

.
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3. Set

θi =

{

θ∗ with probability= min(r, 1)

θi−1 otherwise.

An ideal jumping distribution is one that is easy to sample from and makes the
evaluation of the importance ratio easy. In addition, the jumping distributionsJi(·|·)
should be such that each jump moves a reasonable distance in the parameter space
so that the random walk is not too slow, and also, the jumps should not be rejected
too often.

1.20 Gibbs sampling. Assumeθ hask components, i.e.θ′ = (θ′1, . . . ,θ
′
k)′. The

Gibbs sampler (Geman and Geman, 1984) can be viewed as a special case of the
Metropolis-Hastings algorithm for which the jumping distribution at each iterationi
is a function of the conditional posterior densityp(θ∗j |θi−1

−j , y1:n), whereθ−j denotes
a vector with all the components ofθ except for componentθj . In other words, for
each component ofθ we do a Metropolis step for which the jumping distribution is
given by

Jj,i(θ
∗|θi−1) =

{

p(θ∗j |θi−1
−j , y1:n) if θ∗−j = θi−1

−j

0 otherwise,

and so,r = 1 and every jump is accepted.

If it is not possible to sample fromp(θ∗j |θi
−j , y1:n), then an approximation

g(θ∗j |θi−1
−j ) can be considered. However, in this case it is necessary to compute

the Metropolis acceptance ratior.

1.21 Convergence. In theory, a value fromp(θ|y1:n) is obtained by MCMC when
the number of iterations of the chain approaches infinity. Inpractice, a value obtained
after a sufficiently large number of iterations is taken as a value fromp(θ|y1:n). How
can we determine how many MCMC iterations are enough to obtain convergence?
As pointed out in Gamerman (1997), there are two general approaches to the study
of convergence. One is probabilistic and tries to measure distances and bounds on
distribution functions generated from a chain. So, for example, it is possible to
measure the total variation distance between the distribution of the chain at iterationi
and the target distributionp(θ|y1:n). An alternative approach consists on studying the
convergence of the chain from a statistical perspective. This approach is easier and
more practical than the probabilistic one, however, it cannot guarantee convergence.

There are several ways of monitoring convergence from a statistical viewpoint,
ranging from graphical displays of the MCMC traces for all orsome of the model
parameters or functions of such parameters, to sophisticated statistical tests. As
mentioned before, one of the two main problems with simulation-based iterative
methods is deciding whether the chain has reached convergence, i.e., if the num-
ber of iterations is large enough to guarantee that the available samples are draws



POSTERIOR SAMPLING 27

from the target posterior distribution. In addition, once the chain has reached con-
vergence it is important to obtain uncorrelated draws from the posterior distribu-
tion. Some well known statistical tests to assess convergence are implemented in
freely available software such as Bayesian Output Analysis(BOA) (currently avail-
able atwww.public-health.uiowa.edu/boa/, Smith 2004). Specifically, BOA
includes the following convergence diagnostics: the Brooks, Gelman and Rubin
convergence diagnostics for a list of MCMC sequences (Brooks and Gelman, 1998;
Gelman and Rubin, 1992), which monitors the mixing of the simulated sequences by
comparing the within and between variance of the sequences;the Geweke (Geweke,
1992) and Heidelberger and Welch (Welch, 1983) diagnostics, which are based on
sequential testing of portions of the simulated chains to determine if they correspond
to samples from the same distribution; and the Raftery and Lewis method (Raftery
and Lewis, 1992), which considers the problem of how many iterations are needed to
estimate a particular posterior quantile from a single MCMCchain. BOA also pro-
vides the user with some descriptive plots of the chains —auto-correlations, density,
means and trace plots— as well as plots of some of the convergence diagnostics.

Example 1.21.1A Metropolis-Hastings for an AR(1) model.

Consider again the AR(1) model with the unconditional likelihood (1.17) and a
prior of the formp(φ, v) ∝ 1/v. An MCMC to obtain samples from the posterior
distribution is described below. For each iterationi = 1, 2, . . .

• Samplevi from (v|φ, y1:n) ∼ IG(n/2, Q∗(φ)/2). Note that this is a Gibbs step
and so every draw will be accepted.

• Sampleφi using a Metropolis step with a Gaussian jumping distribution. Therefore,
at iterationi we draw a candidate sampleφ∗ from a Gaussian distribution centered
atφi−1, this is

φ∗ ∼ N
(

φi−1, cv
)

,

with c a constant. The value ofc controls the acceptance rate of the algorithm.
In practice, target acceptance rates usually go from 25% to 40%. See for instance
Gelmanet al. (2004), Chapter 11 for a discussion on how to set the value ofc.

In order to illustrate the MCMC methodology, we considered 500 observations
generated from an AR(1) model with coefficientφ = 0.9 and variancev = 1.0. The
MCMC scheme above was implemented in order to obtain posterior estimation of the
model parameters based on the 500 synthetic observations. Figures 1.11 (a) and (b)
display the traces of the model parameters for two chains of 1,000 MCMC samples
usingc = 2. Several values ofcwere considered and the valuec = 2 was chose since
it led to a Metropolis acceptance rate of approximately 37%.The starting values for
the chains were set atv0 = 0.1, φ0 = 0.5 andv0 = 3, φ0 = 0.0. It is clear from
the pictures that there seems to be no convergence problems.Figures 1.11 (c) and
(d) show the posterior distributions forφ andv based on 450 samples of one of the
MCMC chains taken every other iteration after a burn-in period of 100 iterations.
The early iterations of a MCMC output are usually discarded in order to eliminate, or
diminish as much as possible, the effect of the starting distribution. This is referred to
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Fig. 1.11 (a) and (b) Traces of 1,000 MCMC samples of the parametersφ andv respectively.
The draws from two chains are displayed. The solid lines correspond to traces from a chain
with starting values of(φ0, v0) = (0.5, 0.1) and the dotted lines correspond to traces with
starting values of(φ0, v0) = (0, 3). Panels (c) and (d) show histograms of 450 samples from
the marginal posteriors ofφ andv. The samples were taken every other MCMC iteration after
a burn-in period of 100 iterations.
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as burn-in. The length of the burn-in period varies greatly depending on the context
and the complexity of the MCMC sampler.

Discussion and Further Topics
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Appendix

1.22 The uniform distribution. A random variablex follows a uniform distribu-
tion in the interval(a, b), with a < b, x ∼ U(a, b), orp(x) = U(x|a, b), if its density
function is given by

p(x) =
1

(b− a)
, x ∈ [a, b].

1.23 The univariate normal distribution. A random variablex follows normal
distribution with meanµ and variancev, if its density is given by

p(x) =
1√
2πv

exp

(

− (x− µ)2

2v

)

.

We usex ∼ N(µ, v), or p(x) = N(x|µ, v), to denote thatx follows a univariate
normal distribution. Ifµ = 0 andσ = 1 we say thatx follows a standard normal
distribution.

1.24 The multivariate normal distribution. A random vector of dimensionk
x = (x1, . . . , xk)′, that follows a multivariate normal distribution with meanµ and
variance-covariance matrixΣ, x ∼ N(µ,Σ), or p(x) = N(x|µ,Σ), has a density
function given by

p(x) = (2π)−k/2|Σ|−1/2exp

[

−1

2
(x − µ)′Σ−1(x − µ)

]

.

1.25 The gamma and inverse-gamma distributions.A random variablex that
follows a gamma distribution with shape parameterα and inverse scale parameterβ,
x ∼ G(α, β), or p(x) = G(x|α, β), has a density of the form

p(x) =
βα

Γ(α)
xα−1e−βx, x > 0,

whereΓ(·) is the gamma function. If1x ∼ G(α, β), thenx follows an inverse-gamma
distributionx ∼ IG(α, β), or p(x) = IG(x|α, β) with

p(x) =
βα

Γ(α)
x−(α+1)e−β/x, x > 0.
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1.26 The chi-square distribution. x follows a chi-square distribution withν
degrees of freedom if its density is given by

p(x) =
2−ν/2

Γ(ν/2)
xν/2−1e−x/2, x > 0.

This distribution is the same as theG(x|ν/2, 1/2).

1.27 The inverse-chi-square and the scaled inverse chi-square distributions.
If x ∼ Inv − χ2(ν), or p(x) = Inv − χ2(ν), thenx ∼ IG(ν/2, 1/2). Also, if
x follows a scaled inverse-chi-squared withν degrees of freedom and scales, i.e.,
x ∼ Inv − χ2(ν, s2), thenx ∼ IG(ν/2, νs2/2).

1.28 The univariate Student-t distribution. If x follows a Student-t distribution
with ν degrees of freedom, locationµ and scaleσ, x ∼ tν(µ, σ2), if its density is

p(x) =
Γ((ν + 1)/2)

Γ(ν/2)
√
νπσ

(

1 +
1

ν

(

x− µ

σ

)2
)−(ν+1)/2

.

1.29 The multivariate Student-t distribution. A random vectorx of dimension
k follows a multivariate Student-t distribution withν degrees of freedom, locationµ
and scale matrixΣ, x ∼ Tν(µ,Σ) if its density is given by

p(x) =
Γ((ν + k)/2)

Γ(ν/2)(νπ)k/2
|Σ|−1/2

(

1 +
1

ν
(x − µ)′Σ−1(x − µ)

)−(ν+k)/2

.

Problems

1. Consider the AR(1) modelyt = φyt−1 + ǫt, with ǫt ∼ N(0, v).

(a) Find the MLE of(φ, v) for the conditional likelihood.

(b) Find the MLE of(φ, v) for the unconditional likelihood (1.17).

(c) Assume thatv is known. Find the MAP estimator ofφ under a uniform
priorp(φ) = U(φ|0, 1) for the conditional and unconditional likelihoods.

2. Show that the distributions of(φ|y,F) and (v|y,F) obtained for the AR(1)
reference analysis are the ones given in example 1.16.1.

3. Show that the distributions of(φ|y,F) and (v|y,F) obtained for the AR(1)
conjugate analysis are the ones given in example 1.17.1.
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4. Consider the following models:

yt = φ1yt−1 + φ2yt−2 + ǫt, (1)

yt = a cos(2πω0t) + b sin(2πω0t) + ǫt (2),

with ǫt ∼ N(0, v).

(a) Sample 200 observations from each model using your favorite choice of
the parameters. Make sure your choice for(φ1, φ2) in model (1) lies in
the stationary region. This is, choose(φ1, φ2) such that−2 < φ1 < 2,
φ1 < 1 − φ2 andφ1 > φ2 − 1.

(b) Find the MLE of the models parameters. Use the conditional likelihood
for model (1).

(c) Find the MAP estimators of the model parameters under thereference
prior. Again, use the conditional likelihood for model (1).

(d) Sketch the marginal posterior distributionsp(φ1, φ2|y1:n) andp(v|y1:n)
for model (1).

(e) Sketch the marginal posterior distributionsp(a, b|y1:n) andp(v|y1:n).

(f) Perform a conjugate Bayesian analysis, i.e., repeat (c)to (e) assuming
conjugate prior distributions in both models. Study the sensitivity of the
posterior distributions to the choice of the hyperparameters in the prior.

5. Refer to the conjugate analysis of the AR(1) model in example 1.17.1. Using
the fact thatφ|y,F, v ∼ N(m, vC), find the posterior mode ofv using the EM
algorithm.

6. Sample 1,000 observations from the model (1.1). Using a prior distribution
of the formp(φ

(i)
1 ) = p(φ

(i)
2 ) = N(0, c), for somec and i = 1, 2, p(θ) =

U(θ| − a, a) andp(v) = IG(α0, β0), obtain samples from the joint posterior
distribution by implementing a Metropolis-Hastings algorithm.



2 Traditional Time Series Models

Autoregressive time series models are central to modern stationary time series data
analysis and, as components of larger models or in suitably modified and generalised
forms, underlie non-stationary time-varying models. The concepts and structure of
linear autoregressive models also provide important background material for appreci-
ation of non-linear models. This chapter discusses model forms and inference for AR
models, and related topics. This is followed by discussion of the class of stationary
autoregressive, moving average models, one which a large area of traditional linear
time series analysis is predicated.

Structure of Autoregressions

2.1 Consider the time series of equally-spaced quantitiesyt, for t = 1, 2, . . . ,
arising from the model

yt =

p
∑

j=1

φjyt−j + ǫt, (2.1)

whereǫt is a sequence of uncorrelated error terms and theφj are constant param-
eters. This is a sequentially defined model;yt is generated as a function of past
values, parameters and errors. Theǫt are termed innovations, and are assumed to
be conditionally independent of the past values of the series. They are also often
assumed normally distributed,N(ǫt|0, v), and so they are independent. This is a
standard autoregressive model framework, AR(p) for short; p is the order of the
autoregression.

AR models may be viewed from a purely empirical standpoint; the data are
assumed related over time and the AR form is about the simplest class of empirical
models for exploring dependencies. A more formal motivation is, of course, based
on the genesis in stationary stochastic process theory. Here we proceed to inference
in the model class.

33
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The sequential definition of the model and its Markovian nature imply a sequential
structuring of the data density

p(y1:T ) = p(y1:p)

T
∏

t=p+1

p(yt|y(t−p):(t−1)) (2.2)

for anyT > p. The leading term is the joint density of thep initial values of the
series, as yet undefined. Here the densities are conditionalon(φ1, . . . , φp, v); though
this is not made explicit in the notation. If the firstp values of the series are known
and viewed as fixed constants, andT = n+ p for somen > 1, then the conditional
density ofy = (yT , yT−1, . . . , yp+1)

′ given the firstp values is

p(y|y1:p) =

T
∏

t=p+1

p(yt|y(t−p):(t−1))

=
T
∏

t=p+1

N(yt|f′tφ, v) = N(y|F′φ, vIn), (2.3)

whereφ = (φ1, . . . , φp)
′, ft = (yt−1, . . . , yt−p)

′ andF is ap× n matrix given by
F = [fT , . . . , fp+1]. This has a linear model form and so, the standard estimation
methods discussed in Chapter 1 apply.

Practically useful extensions of the model (2.3) include models with additional
regression terms for the effects of independent regressor variables on the series, differ-
ing variances for theǫt over time, and non-normal error distributions. This standard
normal linear model is a very special case of autoregressions which, generally, define
models via sequences of conditional distributions for(yt|ft) over time.

2.2 Stationary AR Processes.The seriesyt, assumed (at least in principle) to
extend over all timet = 0,±1,±2, . . . , follows a stationary autoregressive model of
orderp, if the stationarity conditions are satisfied. With the innovations independent
N(ǫt|0, v), the stationary distribution of eachyt, and of any set ofk > 1 of theyt,
is zero-mean normal. Extending the model to include a non-zero meanµ for eachyt

givesyt = µ+ (ft − µl)′φ+ ǫt wherel = (1, . . . , 1)′, or yt = β + f′tφ+ ǫt where
β = (1 − l′φ)µ. The special case ofp = 2 is discussed in detail in the following
Section.

As mentioned in Example 1.8.1, whenp = 1, the AR process is stationary for
−1 < φ1 < 1 when the stationary distribution of each of theyt isN(yt|0, v/(1−φ2

1)).
At the boundaryφ1 = 1 the model becomes a non-stationary random walk. The
bivariate stationary distribution of(yt, yt−1)

′ is normal with correlationρ(1) = φ1;
that of (yt, yt−k)′ for anyk is ρ(k) = φk

1 . A positive autoregressive parameterφ1

leads to a process that wanders away from the stationary meanof the series, with
such excursions being more extensive whenφ1 is closer to unity;φ1 < 0 leads to
more oscillatory behaviour about the mean.
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With yt = φ1yt−1 + φ2yt−2 + ǫt, the process is stationary for parameter values
lying in the region−2 < φ1 < 2, φ1 < 1 − φ2 andφ1 > φ2 − 1. Further discussion
appears in the following Section.

In the case of general orderp models, the stationarity condition imposes a set
of restrictions on the coefficientsφ best represented in terms of the roots of the
autoregressive polynomialΦ(u) = 1 −∑p

j=1 φju
j , for |u| ≤ 1. This arises through

the representation of (2.1) as
Φ(B)yt = ǫt,

using the back-shift operatorB, with Byt = yt−1. The process is stationary if, and
only if, the inversion of this equation, namely

yt = Φ(B)−1ǫt =

∞
∑

j=0

πjǫt−j

exists and converges, and this is true only if the roots of thepolynomialΦ(u) have
moduli greater than unity. WriteΦ(u) =

∏p
j=1(1 − αju) so that the roots are the

reciprocals of theαj .Generally, theαj may be real-valued or may appear as pairs of
complex conjugates. Either way, the process is stationary if |αj | < 1 for all j, and
non-stationary otherwise.

2.3 State-Space Representation of an AR(p). The state-space representation of
an AR(p) model has utility in both, exploring mathematical structure and, as we shall
see later, in inference and data analysis. One version of this representation of (2.1) is
simply

yt = F′xt (2.4)

xt = Gxt−1 + ωt, (2.5)

wherext = (yt, yt−1, . . . , yt−p+1)
′, the state vector at timet. The innovation at time

t appears in the error vectorωt = (ǫt, 0, . . . , 0)′. In addition,F = (1, 0, . . . , 0)′ and

G =















φ1 φ2 φ3 · · · φp−1 φp

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

. . . 0
...

0 0 · · · · · · 1 0















. (2.6)

The expected behaviour of the future of the process may be exhibited through the
forecast functionft(k) = E(yt+k|y1:t) as a function of integersk > 0 for any fixed
“origin” t ≥ p, conditional on the most recentp values of the series in the current
state vectorxt = (yt, yt−1, . . . , yt−p+1)

′. We haveft(k) = F′Gkxt. The form is
most easily appreciated in cases when the matrixG has distinct eigenvalues, real
and/or complex. It easily follows that these eigenvalues are precisely the reciprocals
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roots of the autoregressive polynomial equationΦ(u) = 0, namely theαj above.
Then

ft(k) =

p
∑

j=1

ctjα
k
j , (2.7)

where thectj are (possibly complex valued) constants depending onφ and the
current statext, and theαj ’s are thep distinct eigenvalues/reciprocal roots. Thectj
coefficients are given byctj = djetj. Thedj andetj values are the elements of the
p−vectorsd = E′F andet = E−1xt, whereE is the eigenmatrix ofG, i.e., E is
thep × p matrix whose columns are the eigenvectors in order corresponding to the
eigenvaluesαj .

The form of the forecast function depends on the combinationof real and complex
eigenvalues ofG. Supposeαj , for example, is real and positive; the contribution to
the forecast function is thenctjαk

j . If the process is stationary|αi| < 1 for all i so that
this function ofk decays exponentially to zero, monotonically ifαj > 0, otherwise
oscillating between consecutive positive and negative values. If|αj | ≥ 1 the process
is non-stationary and the forecast function is explosive. The relative contribution to
the overall forecast function is measured by the decay rate and the initial amplitude
ctj , the latter depending explicitly on the current state, and therefore having different
impact at different times as the state varies in response to the innovations sequence.

In the case of complex eigenvalues, the fact thatG is real-valued implies that any
complex eigenvalues appear in pairs of complex conjugates.Suppose, for example,
thatα1 andα2 are complex conjugatesα1 = rexp(iω) andα2 = rexp(−iω) with
modulusr and argumentω. In this case, the corresponding complex factorsct1 and
ct2 are conjugate,atexp(±ibt), and the resulting contribution toft(k), which must
be real-valued, is

ct1α
k
1 + ct2α

k
2 = 2atr

k cos(ωk + bt).

Hence,ω determines the constant frequency of a sinusoidal oscillation in the forecast
function, the corresponding wavelength or period beingλ = 2π/ω. In a stationary
model |r| < 1, and so, the sinusoidal oscillations over timest + k with k > 0
are subject to exponentially decay through the damping factor rk, with additional
oscillatory effects ifr < 0. In non-stationary cases the sinusoidal variation explodes
in amplitude as|r|k increases. The factorsat andbt determine the relative amplitude
and phase of the component. The amplitude factor2at measures the initial magnitude
of the contribution of this term to the forecast function,quite separately from the decay
factorr. At a future time epochs > t, the new state vectorxs will define an updated
forecast functionfs(k) with the same form as (2.7) but with updated coefficientscsj

depending onxs, and so affecting the factorsas andbs. Therefore, as time evolves,
the relative amplitudes and phases of the individual components vary according to
the changes in state induced by the sequence of innovations.

Generally, the forecast function (2.7) is a linear combination of exponentially
decaying or exploding terms, and decaying or exploding factors multiplyingsinusoids
of differing periods. Returning to the model (2.1), this basic expected behaviour
translates into a process that has the same form but in which,at each time point,
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the innovationǫt provides a random shock to the current state of the process. This
describes a process that exhibits such exponentially damped or exploding behaviour,
possibly with periodic components, but in which the amplitudes and phases of the
components are randomly varying over time in response to theinnovations.

2.4 Characterisation of AR(2) Processes. The special case ofp = 2 is illu-
minating and of practical importance in its own right. The process is stationary if
−2 < φ1 < 2, φ1 < 1 − φ2 andφ1 > φ2 − 1. In such cases, the quadratic charac-
teristic polynomialΦ(u) = 0 has reciprocal rootsαi lying within the unit circle, and
these define:

• Two real roots whenφ2
1 + 4φ2 ≥ 0, in which case the forecast function decays

exponentially;

• A pair of complex conjugate rootsrexp(±iω) whenφ2
1 + 4φ2 < 0. The roots

have modulusr =
√−φ2 and argument given bycos(ω) = |φ1|/2r. The forecast

function behaves as an exponentially damped cosine.

We already know that−2 < φ1 < 2 for stationarity; for complex roots, we
have the additional restriction to−1 < φ2 < −φ2

1/4. So, in these cases, the model
yt = φ1yt−1 + φ2yt−2 + ǫt represents a quasi-cyclical process, behaving as a
damped sine wave of fixed period2π/ω, but with amplitude and phase characteristics
randomly varying over time in response to the innovationsǫt. A large innovations
variancev induces greater degrees of variation in this dynamic,quasi-cyclical process.
If the innovation variance is very small, or were to become zero at some point,
the process would decay to zero in amplitude due to the damping factor. On the
boundary of this region atφ2 = −1, the modulus isr = 1 and the forecast function
is sinusoidal with no damping; in this case,φ1 = 2 cos(ω). So, for |φ1| < 2, the
modelyt = φ1yt−1 − yt−2 + ǫt is the one of a sinusoid with randomly varying
amplitude and phase; with a small or zero innovation variancev the sinusoidal form
sustains, representing essentially a fixed sine wave of constant amplitude and phase.
It is easily seen that the difference equationyt = 2 cos(ω)yt−1 − yt−2 defines, for
given initial values, a sine wave of period2π/ω.

2.5 Autocorrelation Structure of an AR(p). The autocorrelation structure of an
AR(p) is given in terms of the solution of a homogeneous differenceequation

ρ(k) − φ1ρ(k − 1) − . . .− φpρ(k − p) = 0, k ≥ p. (2.8)

In general, ifα1, . . . , αr denote the reciprocal roots of the characteristic polynomial
Φ(u), where each root has multiplicitym1, . . . ,mr and

∑r
i=1mi = p, then, the

general solution to (2.8) is

ρ(k) = αk
1p1(k) + αk

2p2(k) + . . .+ αk
rpr(k), k ≥ p, (2.9)

wherepj(k) is a polynomial of degreemj − 1.

For instance, in the AR(2) case we have the following scenarios:
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• The characteristic polynomial has two different real roots, each one with multi-
plicity m1 = m2 = 1. Then, the autocorrelation function has the form

ρ(k) = aαk
1 + bαk

2 , k ≥ 2,

wherea andb are constants andα1, α2 are the reciprocal roots. Under stationarity
this autocorrelation function decays exponentially ask goes to infinity and, as we
saw before, this behaviour is shared by the forecast function. The constantsa
and b are determined by specifying two initial conditions such asρ(0) = 1 and
ρ(−1) = φ1/(1 − φ2).

• The characteristic polynomial has one real root with multiplicity m1 = 2 and
so, the autocorrelation function is given by

ρ(k) = (a+ bk)αk
1 , k ≥ 2,

wherea andb are constants andα1 is the reciprocal root. Under stationarity this
autocorrelation function also decays exponentially ask goes to infinity.

• The characteristic polynomial has two complex conjugate roots. In this case the
reciprocal roots can be written asα1 = rexp(iω) andα2 = rexp( − iω) and so, the
autocorrelation function is

ρ(k) = ark cos(kω + b) , k ≥ 2,

wherea and b are constants. Under stationarity the autocorrelation andforecast
functions behave as an exponentially damped cosine.

2.6 The Partial Autocorrelation Function. The autocorrelation and forecast
functions summarise important features of autoregressiveprocesses. We now intro-
duce another function that will provide additional information about autoregressions:
the partial autocorrelation function or PACF. We start by defining the general form of
the PACF and we then see that the partial autocorrelation coefficients of a stationary
AR(p) process are zero after lagp. This fact has important consequences in estimat-
ing the order of an autoregression, at least informally. In practice, it is possible to
decide if an autoregression may be a suitable model for a given time series by looking
at the estimated PACF plot. If the series was originally generated by an AR(p) model
then its estimated partial autocorrelation coefficients should not be significant after
thep-th lag.

The partial autocorrelation function or PACF of a process isdefined in terms
of the partial autocorrelation coefficients at lagk, denoted byφ(k, k). The PACF
coefficient at lagk is a function of the so called best linear predictor ofyk given
yk−1, . . . , y1. Specifically, this best linear predictor, denoted byyk−1

k , has the form
yk−1

k = β1yk−1 + . . .+ βk−1y1, whereβ = (β1, . . . , βk−1)
′ is chosen to minimise

the mean square linear prediction error,E(yk−yk−1
k )2. If yk−1

0 is the minimum mean
square linear predictor ofy0 based ony1, . . . , yk−1 and the process is stationary, then
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it can be shown thatyk−1
0 is given byyk−1

0 = β1y1 + . . .+ βk−1yk−1. The PACF is
then defined in terms of the partial correlation coefficientsφ(k, k), for k = 1, 2, . . .,
given by

φ(k, k) =

{

ρ(y1, y0) = ρ(1) k = 1

ρ(yk − yk−1
k , y0 − yk−1

0 ) k > 1,
(2.10)

whereρ(yi, yj) denotes the correlation betweenyi andyj .

If {yt} follows an AR(p) it is possible to show thatφ(k, k) = 0 for all k >
p (for a proof see for example Shumway and Stoffer, 2000, Chapter 2). Using
some properties of the best linear predictors it is also possible to show that the
autocorrelation coefficients satisfy the following equation,

Γnφn = γn, (2.11)

where Γn is an n × n matrix whose elements are{γ(j − k)}n
j,k=1, and φn,

γn aren-dimensional vectors given byφn = (φ(n, 1), . . . , φ(n, n))′ andγn =
(γ(1), . . . , γ(n))′. If Γn is non-singular then we can writeφn = Γ−1

n γn. Alter-
natively, when dealing with stationary processes it is possible to findφn using the
Durbin-Levinson recursion (Levinson, 1947; Durbin, 1960)as follows. Forn = 0,
φ(0, 0) = 0. Then, forn ≥ 1,

φ(n, n) =
ρ(n) −

∑n−1
k=1 φ(n− 1, k)ρ(n− k)

1 −∑n−1
k=1 φ(n− 1, k)ρ(k)

,

with
φ(n, k) = φ(n− 1, k) − φ(n, n)φ(n− 1, n− k),

for n ≥ 2 andk = 1, . . . , n− 1.

The sample PACF can be obtained by substituting the autocovariances in (2.11), or
the autocorrelations in the Durbin-Levinson recursion by the sample autocovariances
and the sample autocorrelationsγ̂(·) and ρ̂(·). The sample PACF coefficients are
denoted bŷφ(k, k).

Forecasting

2.7 In traditional time series analysis, the one-step-ahead prediction ofyt+1, i.e.,
the forecast ofyt+1 giveny1:t is given by

yt
t+1 = φ(t, 1)yt + φ(t, 2)yt−1 + . . .+ φ(t, t)y1, (2.12)
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with φt = (φ(t, 1), . . . , φ(t, t))′ the solution of (2.11) atn = t. The mean square
error of the one-step-ahead prediction is given by

MSEt
t+1 = E(yt+1 − yt

t+1)
2 = γ(0) − γ′

tΓ
−1
t γt, (2.13)

or, using the Durbin-Levinson recursion this can be recursively computed as,

MSEt
t+1 = MSEt−1

t (1 − φ(t, t)2),

with MSE0
1 = γ(0).

2.8 Similarly, thek-step ahead prediction ofyt+k based ony1:t is given by

yt
t+k = φ(k)(t, 1)yt + . . .+ φ(k)(t, t)y1, (2.14)

withφ(k)
t = (φ(k)(t, 1), . . . , φ(k)(t, t))′ the solution ofΓtφ

(k)
t = γ

(k)
t ,whereγ(k)

t =
(γ(k), γ(k + 1), . . . , γ(t + k − 1))′. The mean square error associated with thek-
step-ahead prediction is given by

MSEt
t+k = E(yt+k − yt

t+k)2 = γ(0) − γ
′(k)
t Γ−1

t γ
(k)
t . (2.15)

It is also possible to compute the forecasts and the associated mean square errors
using the innovations algorithm proposed by Brockwell and Davis (1991) as follows.

The one-step-ahead predictor and its associated mean squared error can be com-
puted iteratively via

yt
t+1 =

t
∑

j=1

bt,j(yt+1−j − yt−j
t−j+1), (2.16)

MSEt
t+1 = γ(0) −

t−1
∑

j=0

b2t,t−jMSEj
j+1, (2.17)

for t = 1, 2, . . . , where forj = 0, 1, . . . , t− 1,

bt,t−j =
γ(t− j) −

∑j−1
l=0 bl,j−lbt,t−lMSEl

l+1

MSEj
j+1

.

Similarly, thek-steps ahead prediction and the corresponding mean squarederror are
given by

yt
t+k =

t+k−1
∑

j=k

bt+k−1,j(yt+k−j − yt+k−j−1
t+k−j ), (2.18)
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MSEt
t+k = γ(0) −

t+k−1
∑

j=k

b2t+k−1,jMSEt
t+k−j . (2.19)

For AR(p) models witht > p, the previous equations provide the exact one-step-
ahead andk-steps-ahead predictions. In particular, it is possible tosee that isyt

follows a stationary AR(p) process, then

yt
t+1 = φ1yt + φ2yt−1 + . . .+ φpyt−p+1. (2.20)

So far we have written the forecasting equations assuming that the parameters are
known. If the parameters are unknown and need to be estimated, which is usually
the case in practice, then it is necessary to substitute the parameter values by the
estimated values in the previous equations.

When a Bayesian analysis of the time series model is performed, the forecasts
are obtained directly from the model equations. So, for instance, if we are dealing
with an AR(p), thek-step-ahead predictions can be computed using either posterior
estimates for the model parameters or samples from the posterior distributions of the
parameters. This will be discussed in detail in the next section.

Estimation in AR Models

2.9 Yule-Walker and Maximum Likelihood. Writing a set of diference equations
of the form (2.8), in which the autocorrelations are substituted by the estimated
autocorrelations, together with the corresponding set of initial conditions leads to the
Yule-Walker estimateŝφ andv̂, such that

R̂pφ̂ = ρ̂p, v̂ = γ̂(0) − φ̂′
R̂−1

p φ̂, (2.21)

whereRp is ap×pmatrix with elementŝρ(k− j), j, k = 1, . . . , p. These estimators
can also be computed via the Durbin-Levinson recursion (seeBrockwell and Davis,
1991 for details). It is possible to show that in the case of stationary AR processes,
the Yule-Walker estimators are such that

√
T (φ̂ − φ) ≈ N(0, vΓ−1

p ) and that̂v is
close tov when the sample sizeT is large. These results can be used to obtain
confidence regions aboutφ̂.

Maximum likelihood estimation in AR(p) models can be achieved by maximising
the conditional likelihood given in (2.3). It is also possible to work with the uncon-
ditional likelihood. This will be discussed later when the ML estimation method for
general ARMA models are described.

2.10 Basic Bayesian Inference for AR models.Return to the basic model (2.1)
and the conditional sampling density (2.3), and suppose that the datay(p+1):T are
observed. Now make the parameters(φ, v) explicit in the notation, so that (2.3) is
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Fig. 2.1 A section of an EEG trace

formally p(y|φ, v, y1:p). Equation (2.3) defines the resulting likelihood function of
(φ, v). This is a conditional likelihood function, conditional on the assumed initial
valuesy1:p, so that resulting inferences, reference posterior inferences or otherwise,
are also explicitly conditional on these initial values. More on dealing with this later.
For now, we have a linear modelp(y|φ, v, y1:p) = N(y|F′φ, vIn) and we can apply
standard theory. In particular, the reference posterior analysis described in Chapter
1 can be applied to obtain baseline inferences for(φ, v).

Example 2.10.1EEG data analysis.

Figure 2.1 displays recordings of an electro-encephalogram (EEG). The data dis-
played represent variations in scalp potentials in micro-volts during a seizure, the
time intervals being just less than one fortieth of a second.The original data were
sampled at 256 observations per second, and the 400 points inthe Figure were
obtained by selecting every sixth observation from a mid-seizure section.

The sample autocorrelations (not shown) have an apparent damped sinusoial form,
indicative of the periodic behaviour evident from the data plot, with a period around
12-14 time units. The damping towards zero evident in the sample autocorrelations
is consistent with stationary autoregressive components with complex roots. The
sample partial autocorrelations are evidently strongly negative at lags bewteen 2 and
7 or 8, but appear to drop off thereafter, suggesting an autoregression of orderp = 7
or p = 8.
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An AR(8) model is explored as an initial model for these data;p = 8 andy9:400
represent the finaln = 392 observations, the first 8 being conditioned upon for initial
values. The posterior multivariate Student-T distribution has 384 degrees of freedom
and so, it is practically indistinguishable from a normal; it has mean

φ̂ = (0.27, 0.07,−0.13,−0.15,−0.11,−0.15,−0.23,−0.14)′

and approximately common standard deviations at 0.05. Thisillustrates quite typ-
ical variation and, to some degree, decay of coefficients with increasing lag. The
innovations standard deviation has posterior estimates = 61.52.

We fixφ = φ̂ to explore the model based on this point estimate of the parameter
vector. The corresponding autoregressive equationΦ(u) = 0 has four pairs of
complex conjugate roots; the corresponding moduli and wavelength pairs(rj , λj)
are (in order of decreasing modulus)

(0.97, 12.73); (0.81, 5.10); (0.72, 2.99); (0.66, 2.23).

The first term here represents the apparent cyclical patternof wavelength around
12 − 13 time units, and has a damping factor close to unity, indicating a rather
persistent waveform; the half-life is aboutk = 23, i.e. 0.97k decays to about 0.5
at k = 23, so that, with zero future innovations, the amplitude of thiswaveform is
expected to decay to half a starting level in about two full cycles. By comparison, the
three other, higher frequency components have much faster decay rates. The pattern
here is quite typical of quasi-cyclical series. The high frequency terms, close to the
Nyquist frequency limit, represent terms capturing very short run oscillations in the
data of very low magnitude, essentially tailoring the modelto low level noise features
in the data rather than representing meaningful cyclical components in the series.

At time T = 400, or t = n = 392, the current state vectorxt together with
the estimated parameter̂φ implies a forecast function of the form given in (2.7)
in which the four component, damped sinusoids have relativeamplitudes2atj of
approximately 157.0, 6.9, 18.0 and 7.0. So the first component of wavelength around
12.73 is quite dominant at this time epoch (as it is over the full span of the data), both
in terms of the initial amplitude and in terms of a much lower decay rate. Thus the
description of the series as close to a time-varying sine wave is reinforced.

Figure 2.2 displays the data and the forecast function from the end of the series over
the nextk = 200 time epochs based on the estimated valueφ̂. Figure 2.3 represents
more useful extrapolation, displaying a single ‘sampled future’ based on estimated
parameter values. This is generated simply by successivelysimulating future values
yT+k =

∑p
j=1 φ̂jyT+k−j + ǫT+k overk = 1, 2, . . . , etc., where theǫT+k are drawn

from N(·|0, s2), and substituting sampled values as regressors for the future. This
gives some flavour of likely development and the form is apparently similar to that
of the historical data, suggesting a reasonable model description. These forecasts
do not account for uncertainties about the estimated parameters(φ̂, s2) so, they do
not represent formal predictive distributions though are quite close approximations.
This point is explored further below. Further insight into the nature of the likely
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Fig. 2.2 EEG trace and forecast function from end of series

development, and also of aspects of model fit, are often gleaned by repeating this
exercise, generating and comparing small sets of possible futures.

2.11 Simulation of Posterior Distributions. Inferences for other functions of
model parameters and formal forecast distributions may be explored via simulation.
Suppose interest lies in more formal inference about, for example, the periodλ1 of
the dominant cyclical component in the above analysis of theEEG series, and other
features of the structure of the roots of the AR polynomial. Though the posterior
for (φ, v) is analytically manageable, that for theαi is not; posterior simulation may
be used to explore these analytically intractable distributions. Similarly, sampled
futures incorporating posterior uncertainties about(φ, v) may be easily computed.

Example 2.11.1EEG data analysis (continued).

A total number of 5,000 draws were made from the full normal/inverse-gamma pos-
terior distribution for(φ, v). For each such draw, a sampled futureyT+1, . . . , yT+k,
for any horizonk, was sampled as before, but now based on the simulated values
(φ, v) at each sample, rather than the estimates(φ̂, s2). This delivers a sample of
size 5,000 from the full joint posterior predictive distribution for (yT+1, . . . , yT+k).
Averaging values across samples provides a Monte Carlo approximation to the fore-
cast function. Exploring sampled futures provides Figureslike 2.4, where additional
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Fig. 2.3 EEG trace and sampled future conditional on parameter estimates(φ̂, s2)

parameter uncertainties are incorporated. In this analysis, the additional uncertainties
are small and have slight effects; other applications may bedifferent.

Turn now to inference on the AR polynomial rootsα. Each posterior draw(φ, v)
delivers a corresponding root vectorα which represents a random sample from the
full posteriorp(α|y, xp). Various features of this posterior sample forα may be
summarised. Note first the inherent identification issue, that the roots are unidentifi-
able as the AR model is unchanged under permutations of the subscripts on theαi.
One way around this difficulty is to consider inference on roots ordered by modulus
or frequency (note the case of real roots formally corresponds to zero frequency).
For example, the dominant component of the EEG model has beenidentified as
that corresponding to the complex conjugate roots with the largest period, around
12 − 13 time units. Ordering the complex values of each sampled set of roots leads
to those with the largest period representing a sample from the posterior distribution
for the period of the dominant component, and similarly for the samples of the corre-
sponding modulus. The left and right panels of Figure 2.5 display the corresponding
histograms in this analysis.

Note that no mention of stationarity has been made in this analysis. The reference
posterior forφ, a multivariate Student-T distribution, is unconstrained and does not
theoretically respect a constraint such as stationarity. In some applications, it may be
physically meaningful and desirable to impose such an assumption and the analysis
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should then be modified; theoretically, the prior for(φ, v) should be defined as zero
outside the stationarity region, whatever the form inside.The simplest approach
is to proceed as in the unconstrained analysis, but to simplyreject sampled(φ, v)
values if theφ vector lies outside the stationarity region, a condition that is trivially
checked by evaluating the roots of the implied AR polynomial. In cases where the
data/model match really supports a stationary series, the rejection rate will be low and
this provides a reasonable and efficient approximation to the analysis imposing the
stationarity constraint through the prior. In other cases,evidence of non-stationary
features may lead to higher rejection rates and an inefficient analysis; other methods
are then needed. Some references below indicate work along these lines. Of course,
an over-riding consideration is the suitability of a strictstationarity assumption to
begin with; if the series, conditional on the appropriateness of the assumed model,
is really consistent with stationarity, this should be evidenced automatically in the
posterior for the AR parameters, whose mass should be concentrated on values
consistent with stationarity. This is, in fact, true in the unconstrained EEG data
analysis. Here the estimated AR polynomial root structure (at the reference posterior
meanφ̂) has all reciprocal roots with moduli less than unity, suggesting stationarity.
In addition, the 5,000 samples from the posterior can be checked similarly; in fact,
the actual sample drawn has no values with roots violating stationarity, indicating
high posterior probability (probability one on the Monte Carlo posterior sample)
on stationarity. In other applications, sampling the posterior may give some values
outside the stationary region; whatever the values, this provides a Monte Carlo
approach to evaluating the posterior probability of a stationary series (conditional on
the assumed AR model form).

2.12 Order Assessment.Analysis may be repeated for different values of model
orderp, it being useful and traditional to explore variations in inferences and predic-
tions across a range of increasing values. Larger values ofp are limited by the sample
size, of course, and fitting high order models to only moderate data sets produces
meaningless reference posterior inferences; large numberof parameters, relative to
sample size, can be entertained only with informed and proper prior distributions for
those parameters, such as smoothness priors and others mentioned below. Otherwise,
increasingp runs into the usual regression problems of over-fitting and collinearity.

Simply proceeding to sequentially increasepand exploringfitted residuals,changes
in posterior parameter estimates and so forth, is a very valuable exercise. Var-
ious numerical summaries may be easily computed as adjunct to this, the two
most widely known and used being the so-called Akaike information criterion, or
AIC and the Bayesian information criterion or BIC (Akaike, 1969; Akaike, 1974;
Schwarz, 1978). The AIC and BIC are now described together with a more formal,
reference Bayesian measure of model fit. As we are comparing models with differing
numbers of parameters, we do so based on a common sample size;thus, we fix
a maximum orderp∗ and, when comparing models of various ordersp ≤ p∗, we
do so in conditional reference analyses using the lattern = T − p∗ of the full T
observations in the series.
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Fig. 2.6 Log-likelihood function for AR model order, computed from marginal data densities
(labelled M), together with negated AIC criterion (labelled A) and BIC criterion (labelled B)

For a chosen model orderp, explicit dependence onp is made by writingφ̂p for
the MLE of the AR parameters, ands2p for the corresponding posterior estimate of
innovations variance, i.e. the residual sum of squares divided byn − p. For our
purposes, the AIC measure of model fit is taken as2p + n log(s2p), while the BIC
is taken aslog(n)p + n log(s2p). Values ofp leading to small AIC and BIC values
are taken as indicative of relatively good model fits, withinthe class of AR models
so explored (they may, of course, be poor models compared with other classes).
Larger values ofp will tend to give smaller variance estimates which decreases the
second term in both expressions here, but this decrease is penalised for parameter
dimension by the first term. BIC tends to choose simpler models than AIC. For the
EEG series, negated AIC and BIC values, normalised to zero atthe maximum, appear
in Figure 2.6, based onp∗ = 25. Also displayed there is a plot of the corresponding
log-likelihood function for model order, computed as follows.

In a formal Bayesian analysis, the orderp is viewed as an uncertain parameter and
so any prior overp is updated via a likelihood function proportional to the marginal
data densityp(y(p+1):T |xp) =

∫

p(y(p+1):T |φ, v, xp)dp(φ, v), wherep(φ, v) is the
prior under the AR(p) model and it should be remembered that the dimension ofφ

depends onp.Given proper priorsp(φ, v) across the interesting range of order values
p ≤ p∗, a direct numerical measure of relative fit is available through this collection of
marginal densities which defines a valid likelihood function for the model order. To do
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this, however, requires a proper priorp(φ, v) that naturally depends on the parameter
dimensionp and this dependency is important in determining the resulting likelihood
function. The use of the traditional reference prior invalidates these calculations due
to impropriety. Alternative approaches to constructing proper but, in some senses,
uninformative priors may be pursued (see later references)but the critical need for
priors to be consistent as model dimension varies remains. Nevertheless, under
the assumedly common reference priorp(φ, v) ∝ 1/v, the marginal data densities
are defined up to a proportionality constant and follow directly from the reference
Bayesian analysis of the linear regression model in Chapter1. The maginal density
values are closely related to the AIC and BIC values. The reference log-likelihood
function so computed for the EEG series, withp∗ = 25, appears in figure 2.6.
Apparently, both this reference log-likelihood function and the usual AIC and BIC
criteria suggest orders between 8 and 10 as preferable, hence the earlier analysis was
based onp = 8.

Various alternatives based on different priors give similar results, at least in terms
of identifyingp = 8 or 9 as most appropriate. We note also that formal computation
of, for example, predictive inferences involving averaging over p with respect to
computed posterior probabilities on model order is possible, in contexts where proper
priors for(φ, v) are defined across models.

2.13 Analytic Considerations: Initial Values and Missing Data. The above
analysis partitions the full data seriesy1:T into the p initial valuesy1:p and the
final n = T − p valuesy(p+1):T and is then conditional ony1:p. Turn now to the
unconditional analysis, in which the full likelihood function for (φ, v) is

p(y1:T |φ, v) = p(y(p+1):T |φ, v, y1:p)p(y1:p|φ, v) (2.22)

= p(y|φ, v, xp)p(xp|φ, v).

The conditional analysis simply ignores the second component in (2.23). Apparently,
whether or not this is justifiable or sensible depends on context, as follows.

In some applications, it is appropriate to assume some form of distribution for the
initial valuesxp that does not, in fact, depend on(φ, v) at all. For example, it is
perfectly reasonable to specify a model in which, say, the distributionN(xp|0,A) is
assumed, for some specified variance matrixA. In such cases, (2.23) reduces to the
first component alone, and the conditional analysis is exact.

Otherwise, whenp(xp|φ, v) actually depends on(φ, v), there will be a contri-
bution to the likelihood from the initial values, and the conditional analysis is only
approximate. Note, however, that, as the series lengthT increases, the first term of
the likelihood, based onn = T − p observations, becomes more and more domi-
nant; the effect of the initial values in the second likelihood factor is fixed based on
these values, and does not change withn. On a log-likelihood scale, the first factor
behaves in expectation aso(n), and so the conditional and unconditional analyses
are asymptotically the same. In real problems with finiten, but in whichp is usually
low compared ton, experience indicates that the agreement is typically closeeven
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with rather moderate sample sizes. It is therefore common practice, and completely
justifiable in applications with reasonable data sample sizes, to adopt the conditional
analysis.

The situation has been much studied under a stationarity assumption, and a vari-
ation of the reference Bayesian analysis is explored here. Under stationarity, any
subset of the data will have a marginal multivariate normal distribution, with zero
mean and a variance matrix whose elements are determined by the model parame-
ters. In particular, the initial values followN(xp|0, vA(φ)) where thep × p matrix
A(φ) depends (only) onφ through the defining equations for autocorrelations in AR
models. So (2.23), as a function of(φ, v), is

p(y1:T |φ, v) ∝ v−T/2|A(φ)|−1/2exp(−Q(y1:T ,φ)/2v), (2.23)

whereQ(y1:T ,φ) =
∑T

t=p+1(yt − f′tφ)2 +x′pA(φ)−1xp. As developed in Boxet al.
(1994, Chapter 7), this reduces to a quadratic formQ(y1:T ,φ) = a− 2b′φ+φ′Cφ,
where the quantitiesa, b,C are easily calculable, as follows. Define the the symmetric
(p+ 1)× (p+ 1) matrixD = {Dij} by elementsDij =

∑T+1−j−i
r=0 yi+ryj+r; then

D is partitioned as

D =

(

a −b′

−b C

)

.

One immediate consequence of this is that, if we ignore the determinant factor
|A(φ)|, the likelihood function is of standard linear model form. The traditional
reference priorp(φ, v) ∝ v−1 induces a normal/inverse gamma posterior, for exam-
ple; other normal/inverse gamma priors might be used similarly. In the reference
case, full details of the posterior analysis can be worked through by the reader. The
posterior mode forφ is nowφ̂

∗
= C−1b. For the EEG series, the calculations lead

to

φ̂
∗

= (0.273, 0.064,−0.128,−0.149,−0.109,−0.149,−0.229,−0.138)′

to three decimal places. The approximate value based on the conditional analysis is

φ̂ = (0.272, 0.068,−0.130,−0.148,−0.108,−0.148,−0.226,−0.136)′,

earlier quoted to only two decimal places in light of the corresponding posterior
standard deviations around 0.05 in each case. The differences, in the third decimal
place in each case, are negligible, entirely so in the context of spread of the posterior.
Here we are in the (common) context whereT is large enough compared top, and
so, the effect of the initial values in (2.23) is really negligible. Repeating the analysis
with just the firstT = 100 EEG observations, the elements ofφ̂ andφ̂

∗
differ by

only about 0.01, whereas the associated posterior standarderrors are around 0.1; the
effects become more marked with smaller sample sizes, though are still well within
the limits of posterior standard deviations with much smaller values ofT. In other
applications the effects may be more substantial.
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Ignoring the determinant factor can be justified by the same,asymptotic reasoning.
Another justification is based on the use of an alternative reference prior: that
based on Jeffrey’s rule. In this case, as shown in Boxet al.(1994), the Jeffrey’s
prior is approximatelyp(φ, v) ∝ |A(φ)|1/2v−1/2; this results in cancellation of the
determinant factor so the above analysis is exact.

Otherwise, under different prior distributions, the exactposterior involves the
factor |A(φ)|, a complicated polynomial function ofφ. However,|A(φ)| can be
evaluated at any specifiedφ value, and numerical methods can be used to analyse
the complete posterior. Numerical evaluation of the exact MLE is now a standard
feature in some software packages, for example. Bayesian analysis using Monte
Carlo methods is also easy to implement in this framework.

2.13.1 Initial Values Revisited via Simulation. Introduce the truly uncertain ini-
tial valuesx0 = (y0, y−1, . . . , y−(p−1))

′. Adjust the earlier conditional analysis to
be based on allT observationsy1:T and now to be conditional on these (imaginary)
initial valuesx0. Then, whatever the prior, we have the posteriorp(φ, v|y1:T , x0).
In the reference analysis, we have a normal/inverse gamma posterior now based on
all T observations rather than just the lastn = T − p, with obvious modifications.
Note that this posterior can be simulated, to deliver draws for (φ, v) conditional on
any specific initial vectorx0. This can be embedded in an iterative simulation of the
full joint posteriorp(φ, v, x0|y1:T ) if, in addition, we can samplex0 vectors from the
conditional posteriorp(x0|φ, v, y1:T ) for any specified(φ, v) parameters.

In the case of a stationary series, stationarity and the linear model form imply
reversibility with respect to time; that is, the basic AR model holds backwards, as
well as forwards, in time. Hence, conditional on(φ, v) and future series values
yt+1, yt+2, . . . , the current valueyt follows the distributionN(yt|g′tφ, v) where
gt = rev(xt+p) = (yt+1, . . . , yt+p)

′; here the operatorrev(·) simply reverses the
elements of its vector argument. Applying this to the initial values att = 0,−1, . . . ,
leads to

p(x0|φ, v, y1:T ) =

−(p−1)
∏

t=0

N(yt|g′tφ, v).

Hence, given(φ, v), a vectorx0 is simulated by sequentially sampling the individual
component normal distributions in this product: first drawy0 given the known data
xp and the parameters; then substitute the sampled valuey0 as the first element of the
otherwise know data vectorxp−1, and drawy1; continue this way down toy−(p−1).
This is technically similar to the process of simulating a future of the series illustrated
earlier; now we are simulating the past.

In the modern, computational world of applied statistics, this approach is both
trivially implemented and practically satisfying as it provides, modulo the Monte
Carlo simulation, exact analysis. Further, extensions of basic AR models to incorpo-
rate various practically relevant additional features, naturally lead to Markov chain
simulations as natural, and typically necessary, approaches to analysis, so that dealing
with the starting value issue in this framework makes good sense.
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It should also be clear that the same principle applies to problems of missing data.
For any set of indicest such that the valuesyt are missing (at random, that is, the
reasons for missing data do not have a bearing on the values ofthe model parameters),
then iterative simulation analysis can be extended and modified to incorporate the
missing values as additional uncertain quantities to be estimated. Further details can
be worked out in the framework here, as with the missing initial values above, and
details are left to the reader. We revisit missing values later in the context of general
state space models, and state space representations of autoregressions in particular.

Further Issues on Bayesian Inference for AR Models

2.14 Sensitivity to the choice of prior distributions. Additional analyses explore
inferences based on longer order AR models with various proper priors for the AR
coefficients. One interest is in exploring the sensitivity of the earlier, reference
inferences under ranges of proper and perhaps more plausible prior assumptions. In
each case the model is based on (a maximum lag)p = 25, assuming that higher order
models would have negligible additional coefficients and that, in any case, the higher
order coefficients in the model are likely to decay. The two priors forφ are centred
around zero and so induce shrinkage of the posteriors towards the prior means of
zero for all parameters. In each case, the firstp values ofy1:T are fixed to provide
conditional analyses comparable to that earlier discussedat length.

2.14.1 Analysis based on normal priors.A first analysis assumes a traditional
prior with the coefficients i.i.d. normal; the joint prior isN(φ|0, wIp), for some
scalar variancew and so, it induces shrinkage of the posterior towards the prior
mean of zero for all parameters. The hyperparameterw will be estimated together
with the primary parameters(φ, v) via Gibbs sampling to simulate the full posterior
for (φ, v, w). We assume prior independence ofv andw and adopt uniform priors,
so p(v) andp(w) are constant over a wide range; in each analysis we assume this
range is large enough so that the corresponding conditionalposteriors are effectively
proportional to the appropriate conditional likelihood functions, i.e., the truncation
implied under the prior has little effect. Posterior simulations draw sequentially from
the following three conditional posteriors, easily deduced from the model form and
general normal linear model theory reviewed in Chapter 1.

• Given(v, w), posterior forφ isN(φ|φ̂,B) whereB−1 = w−1Ip + v−1FF′ and
φ̂ = Bv−1Fy.

• Given(φ, w), posterior forv−1 isGa(v−1|n/2, e′e/2) based on residual vector
e = y − F′φ.

• Given(φ, v), posterior forw−1 isGa(w−1|p/2,φ′φ/2).

For the EEG series, Figure 2.7 graphs the approximate posterior means of the
φj ’s based on a Monte Carlo sample of size 5,000 from the simulation analysis so
specified. This sample is saved following burn-in of 500 iterations. Also plotted
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Fig. 2.7 Estimates ofφ in EEG analyses. The vertical bars indicate approximate 95%
posterior intervals for theφj from the reference analysis, centred about reference posterior
means. The symbols X indicate approximate posterior means from the analysis based on
independent normal priors. Symbols O indicate approximateposterior means from the analysis
based on the two-component, normal mixture priors
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are the reference posterior means with two posterior standard deviation intervals, for
comparison. Some shrinkage of the coefficients is evident, though apparently not
dramatic in extent, and the posterior means are not incomparable with the reference
values, indicating some robustness to prior specification.Inferences and forecasts
based on the normal prior will not differ substantially fromthose based on the
reference prior. In this analysis, the posterior for the shrinkage parameter

√
w is

apparently unimodal, centred around 0.12 with mass predominantly concentrated in
the range 0.08-0.16.

2.14.2 Discrete Normal Mixture Prior and Subset Models.A further analysis
illustrates priors inducing differential shrinkage effects across theφj parameters;
some of theφj may indeed be close to zero, others quite clearly distinct from zero,
and a prior view that this may be the case can be embodied in standard modifications
of the above analysis. One such approach uses independent priors conditional on
individual scale factors, namelyN(φj |0, w/δj), where the weightsδj are random
quantities to be estimated. For example, a model in which only one or two of theφj

are really significant is induced by weightsδj close to unity for those parameters, the
other weights being relatively large resulting in priors and posteriors concentrated
around zero for the negligible weights. This links to the concept of subset auto-
regressions, in which only a few parameters at specific lags are really relevant, the
others, at possibly intervening lags, being zero or close tozero. A class of priors
for φ that embody this kind of qualitative view provides for automatic inference on
relevant subsets of non-negligible parameters and, effectively, addresses the variable
selection question.

Probably the simplest approach extends the case of independent normal priors
above, in which eachδj = 1, to the case of independentpriors that are two-component
normals, namely

πN(φj |0, w) + (1 − π)N(φj |0, w/L)

whereπ is a probability andL a specified precision factor. IfL >> 1, the second
normal component is very concentrated around zero, so this mixture prior effectively
states that eachφj is close to zero, with probability1 − π, and is otherwise drawn
from the earlier normal with variancew.

AssumeL is specified. Introduce indicatorsuj such thatuj = 1 or 0 according to
whetherφj is drawn from the first or the second of the normal mixture components.
Theseuj are latent variables that may be introduced to enable the simulation analysis.
Write u = (u1, . . . , up) and, for any set of valuesu, write δj = uj + (1 − uj)L,
so thatδj = 1 or L; also, define the matrix∆ = diag(δ1, . . . , δp). Further, write
k =

∑p
j=1 uj for the number of coefficients drawn from the first normal component;

k can be viewed as the number of non-neglible coefficients, theothers being close to
zero. Note that, givenπ, k has a prior binomial distribution with success probability
π.

For completeness and robustness,π is usually viewed as uncertain too; in the
analysis below,π is assigned a beta prior,Be(π|a, b), independently of the other
random quantities in the model. This implies, among other things, a beta-binomial
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marginal prior for the numberk of significant coefficients, namely

p(k) =

(

n

k

)

β(a, b)

β(a+ k, b+ p− k)
,

overk = 0, . . . , p, whereβ(·, ·) is the beta function.

Under this model and prior specification, the various conditional posterior distri-
butions to be used in Gibbs sampling of the full posterior for(φ, v, w, u, π) are as
follows.

• Given(v, w, u, π), posterior forφ isN(φ|b,B) whereB−1 = w−1∆+v−1FF′

andb = Bv−1Fy.
• Given(φ, w, u, π), posterior forv−1 isGa(v−1|n/2, e′e/2) based on residual

vectore = y − F′φ.

• Given (φ, v, u, π), posterior forw−1 is Ga(w−1|p/2, q/2) with scale factor
defined byq =

∑p
j=1 φ

2
jδj .

• Given(φ, v, w, π), theuj are independent with conditional posterior probabili-
tiesπj = Pr(ui = 0|φ, v, w, π) given, in odds form, by

πj

1 − πj
=

π

1 − π
exp(−(L− 1)φ2

j/2w)/
√
L.

• Given(φ, v, w, u), posterior forπ is beta, namelyBe(π|a+k, b+p−k) where
k =

∑p
j=1 uj .

Iterative sampling of these conditional distributions provides samples ofφ, v, w, u,
andπ for inference. The additional symbols in Figure 2.7 indicate the posterior means
for theφj from such an analysis, again based on a simulation sample size of 5,000
from the full posterior; the analysis adoptsa = 1, b = 4 andL = 25. We note
little difference in posterior means relative to the earlier analyses, again indicating
robustness to prior specifications as there is a good deal of data here.

The implied beta-binomial prior fork appears in Figure 2.8, indicating mild sup-
port for smaller values consistent with the view that, though there is much prior
uncertainty, several or many of the AR coefficients are likely to be negligible. The
posterior simulation analysis provides posterior samplesof k, and the relative fre-
quencies estimate the posterior distribution, as plotted in Figure 2.8. This indicates
a shift to favouring values in the 5–15 ranges based on the data analysis under this
specific prior structure; there is much uncertainty aboutk represented under this
posterior, though the indication of a evidence for more thanjust a few coefficients
is strong. Additional information is available in the full posterior sample; it car-
ries, for instance, Monte Carlo estimates of the posterior probabilities that individual
coefficientsφj are drawn from the first or second mixture component, simply the ap-
proximate posterior means of the corresponding indicatorsuj . This information can
be used to assess subsets of significant coefficients, as adjunct to exploring posterior
estimates and uncertainties about the coefficients, as in Figure 2.7.
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Fig. 2.8 Prior and approximate posterior distribution for the number of non-negligible AR
coefficients, out of the totalp = 25, in the EEG analysis under the two-component mixture
prior

2.15 Alternative Prior Distributions.

2.15.1 Scale-mixtures and Smoothness Priors.Analyses based on alternative
priors may be similarly explored; some examples are mentioned here, and may be
explored by the reader. For instance, the second analysis isan example of a prior
constructed via scale-mixtures of a basic normal prior for the individual coefficients.
The mixing distribution in that case is discrete, placing mass ofπ at δj = 1 and
δj = 25. Other mixing distributions are common in applied Bayesian work, a key
example being the class of gamma distributions. For instance, take the weightsδj
to be independently drawn from a gamma distribution with shape and scale equal
to k/2 for somek > 0; this implies that the resulting marginal prior for eachφj

is a Student-t distribution withk degrees of freedom, mode at zero and scale factor√
w. This is, in some senses, a natural heavy-tailed alternativeto the normal prior,

assigning greater prior probabilities toφj values further from the prior location at
zero. This can result in differential shrinkage, as in the case of the discrete normal
mixture in the example.

A further class of priors incorporate the view that AR coefficients are unlikely to
be large at higher lags, and ultimately decay towards zero. This kind of qualitative
information may be important in contexts wherep is large relative to expected sample
sizes. This can be incorporated in the earlier normal prior framework, for example,
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by generalising to independentpriorsN(φj |0, w/δj) where the weights are now fixed
constants that concentrate the priors around zero for larger lagsj; an example would
be δj = j2. Note that this may be combined with additional, random weights to
develop decaying effects within a normal mixture prior, andis trivially implemented.

Traditional smoothness priors operate on differences of parameters at successive
lags, so that priors for|φj+1 − φj | are also centred around zero to induce a smooth
form of behaviour ofφj as a function of lagj, a traditional ‘distributed lag’ concept;
a smooth form of decay of the effects of lagged values of the series is often naturally
anticipated. This is again a useful concept in contexts where long order models
are being used. One example of a smoothness prior is given by generalising the
normal prior structure as follows. Take the normal marginN(φ1|0, w/δ1) and,
for j > 1, assume conditional priorsN(φj |φj−1, w/δj); here theδj weights are
assumed to increase with lagj to help induce smoothness at higher lags. This
specification induces a multivariate normal prior (conditional on theδj andw),
p(φ) = p(φ1)

∏p
j=2 p(φj |φj−1) = N(φ|0,A−1w), where the precision matrix

A = H′∆H is defined by∆ = diag(δ1, . . . , δp) and

H =













1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · −1 1













.

Again, theδj weights may be either specified or random,or a mix of the two. Posterior
inferences follow easily using iterative simulation, via straightforward modifications
of the analyses above.

2.15.2 Priors based on AR latent structure.Consider again the AR(p) model
whose characteristic polynomial is given byΦ(u) = 1−φ1u−. . .−φpu

p.The process
is stationary if the reciprocal roots of this polynomial have moduli less than unity.
Now, consider the case in which there is a maximum number ofC pairs of complex
valued reciprocal roots and a maximum number ofR real valued reciprocal roots with
p = 2C + R. The complex roots appear in pairs of complex conjugates, each pair
having modulusrj and wavelengthλj —or equivalently, frequencyωj = 2π/λj —
for j = 1, . . . , C. Each real reciprocal root has modulusrj, for j = C+1, . . . , C+R.
Following Huerta and West (1999), the prior structure givenbelow can be assumed
on the real reciprocal roots

rj ∼ πr,−1I(−1)(rj) + πc,0I0(rj) + πr,1I1(rj)

+(1 − πr,0 − πr,−1 − πr,1)gr(rj), (2.24)

whereI(·) denotes the indicator function,gr(·) is a continuous density over(−1, 1)
andπr,· are prior probabilities. The point masses atrj = ±1 allow us to consider non-
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stationary unit roots. The point mass atrj = 0 handles the uncertainty in the number
of real roots, since this number may reduce below the prespecified maximumR. The
default option forgr(·) is the uniformgr(·) = U(·| − 1, 1), i.e., the reference prior
for a component AR(1) coefficientrj truncated to the stationary region. Similarly,
for the complex reciprocal roots the following prior can be assumed

rj ∼ πc,0I0(rj) + πc,1I1(rj) + (1 − πc,1 − πc,0)gc(rj),

λj ∼ h(λj), (2.25)

with gc(·) a continuous distribution on0< rj < 1 andh(λj) a continuous distribution
on 2 < λj < λu, for j = 1, . . . , C. The value ofλu is fixed and by default it
could be set ton/2. In addition, a so called “component reference prior” (Huerta
and West, 1999) is induced by assuming a uniform prior on the implied AR(2)
coefficients2rj cos(2π/λj) and−r2j , but restricted to the finite support ofλj for
propriety. This is defined bygc(rj) ∝ r2j , so that the marginal forrj is Be(·|3, 1),
andh(λj) ∝ sin(2π/λj)/λ

2
j on2 < λj < λu. The probabilitiesπc,0 andπc,1 handle

the uncertainty in the number of complex components and non-stationary unit roots,
respectively. Finally, uniform Dirichlet distributions are the default choice for the
probabilitiesπr,· andπc,·, this is

Dir(πr,−1, πr,0, πr,1|1, 1, 1), Dir(πc,0, πc,1|1, 1),

and an inverse-Gamma prior is assumed forv, IG(v|a, b).
A MCMC sampling scheme can be implemented to obtain samples from the

posterior distribution of the model parameters

θ = {(r1, λ1), . . . , (rC , λC), rC+1, . . . , rC+R, πr,−1, πr,0, πr,1, πc,0, πc,1, v, x0},

with x0 = (y0, . . . , y−(p−1))
′, thep initial values. Specifically, if for any subsetθ∗

of elements ofθ, θ\θ∗ denotes all the elements ofθ with the subsetθ∗ removed, the
MCMC algorithm can be summarised as follows.

• For eachj = C + 1, . . . , C + R, sample the real roots from the conditional
marginal posteriorp(rj |θ\rj , x0, y1:n). As detailed in Huerta and West (1999), the
conditional likelihood function forrj provides a normal kernel inrj and so, obtaining
draws for eachrj reduces to sampling from a mixture posterior with four components,
which can be easily done.

• For eachj = 1, . . . , C, sample the complex roots from the conditional marginal
posteriorp(rj , λj |θ\(rj , λj), x0, y1:n). Sampling from this conditional posterior
directly is difficult and so, a reversible jump Markov chain Monte Carlo step is
necessary. The reversible jump MCMC (RJMCMC) method introduced in Green
(1995), permits jumps between parameter subspaces of different dimensions at each
iteration. The method consists on creating a random sweep Metropolis-Hastings al-
gorithm adapted for changes in dimensionality. The RJMCMC algorithm is described
in the Appendix.
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• Sample(πr,−1, πr,0, πr,1)and(πc,0, πc,1) from conditionally independent Dirich-
let posteriors as detailed in Huerta and West (1999).

• Samplev from an Inverse-Gamma distribution.

• Samplex0. Huerta and West (1999) shows the time reversibility property for
AR models with unit roots, and so, it is possible to sample theinitial valuesx0 in
similar way to the one described in section 2.13.1.

Example 2.15.1A RJMCMC for an AR(4) model with structured priors.

We consider the analysis of 100 observations simulated froman AR(2) process with
a single pair of complex roots with modulusr = 0.9 and wavelengthλ = 8. We fit an
AR(4) to these data using the structured priors previously described. We setC = 2
andR = 0 and so, two RJMCMC steps are needed to sample(r1, λ1) and(r2, λ2).
Each RJMCMC step has a certain number of moves. For instance,if the chain is
currently atrj = 0, the following moves can be considered, each with probability
1/3

• Remain at the origin.

• Jump at new values of the form(1, ω∗
j ).

• Jump at new values of the form(r∗j , ω
∗
j ).

Details about the RJMCMC algorithm for the general AR(p) case are discussed
in Huerta (1998). Free software is available to perform posterior inference for AR
models with structured priors. The software is calledARcomp and can be downloaded
fromwww.isds.duke.edu/isds-info/software.html. ARcompwas used to fit
an AR(4) with structured priors to the simulated data. Figure 2.9 shows the posterior
distribution for the model orderp, and the posteriors for the number of complex pairs
C and the number of real characteristic rootsR. Note that in this exampleR was
set to zero a priori and so, the posterior gives probability one toR = 0. From these
graphs it is clear that the model is adequately capturing theAR(2) structure in the
simulated data, asPr(p = 2|y1:n) > 0.8 andPr(C = 1|y1:n) > 0.8.

Figure 2.10 displays the posterior distribution of(r1, λ1) (bottom panels) and
(r2, λ2) (top panels). We obtainPr(r1 = 0|y1:n) = 0.98 andPr(r2 = 0|y1:n) = 0,
which are consistent with the fact that the data were simulated from an AR(2) process.
In addition, the marginal posteriors forr2 andλ2 are concentrated around the true
valuesr = 0.9 andλ = 8.

Example 2.15.2Analysis of the EEG data with structured priors.

We now consider an analysis of the EEG data shown in Figure 2.1using structured
priors. In this example we setC = R = 6 and so, the maximum model order
is pmax = 2 ∗ 6 + 6 = 18. Figure 2.11 shows the posterior distributions ofp, C
andR. This analysis gives highest posterior probability to a model with 4 pairs of
characteristic roots and 3 real roots, or equivalently a model with p = 11. However,
there is considerable uncertainty in the number of real and complex roots and so,
models with10 ≤ p ≤ 16 get significant posterior probabilities. Figure 2.12 displays
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Fig. 2.9 Posterior distibutions of the model order, the number of complex pairs and the
number of real components for the simulated data

the marginal posterior distributions ofr1 andλ1, i.e., the marginals for the modulus
and wavelength of the component with the highest modulus. Note that these pictures
are consistent with the results obtained for the reference analysis of an AR(8) model
presented previously.

Autoregressive, Moving Average (ARMA) Models

2.16 Structure of ARMA Models. Consider a time seriesyt, for t = 1, 2, . . . ,
arising from the model

yt =

p
∑

i=1

φiyt−i +

q
∑

j=1

θjǫt−j + ǫt, (2.26)

with ǫt ∼ N(0, v). Then,{yt} follows an autoregressive moving average model, or
ARMA(p, q), wherep andq are the orders of the autoregressive and moving average
parts, respectively.

Example 2.16.1MA(1) process.
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Fig. 2.10 Posterior distributions of(r1, λ1) and(r2, λ2) for the simulated data
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Fig. 2.11 Posterior distributions of the model order,C andR for the EEG data
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Fig. 2.12 Posterior distributions of(r1, λ1) for the EEG data
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If yt follows a MA(1) process,yt = θǫt−1 + ǫt, the process is stationary for all the
values ofθ. In addition, it is easy to see that the autocorrelation function has the
following form

ρ(k) =







1 k = 0
θ

(1+θ2) k = 1

0 otherwise.

Now, if we consider a MA(1) process with coefficient1θ instead ofθ, we would
obtain the same autocorrelation function and so, it would beimpossible to determine
which of the two processes generated the data. Therefore, itis necessary to impose
identifiability conditions onθ. In particular,1θ > 1 is the identifiability condition for
a MA(1), which is also known as the invertibility condition, since it implies that the
MA process can be “inverted” into an infinite order AR process.

In general, for a MA(q), the process is identifiable or invertible only when the
roots of the MA characteristic polynomialΘ(u) = 1 + θ1u+ . . .+ θqu

q lie outside
the unit circle. In this case it is possible to write the MA process as an infinite order
AR process. For an ARMA(p, q) process, the stationarity conditions are written in
terms of the AR coefficients, i.e., the process is stationaryonly when the roots of
the AR characteristic polynomialΦ(u) = 1 − φ1u− . . .− φpu

p lie outside the unit
circle. The ARMA process is invertible only when the roots ofthe MA characteristic
polynomial lie outside the unit circle. So, if the ARMA process is stationary and
invertible, it can be written either as a purely AR process ofinfinite order, or as a
purely MA process of infinite order.

If yt follows an ARMA(p, q) we can writeΦ(B)yt = Θ(B)ǫt, with

Φ(B) = 1 − φ1B − . . .− φpB
p and Θ(B) = 1 + θ1B + . . .+ θqB

q,

whereB is the backshift operator. If the process is stationary thenwe can write it as
a purely MA process of infinite order

yt = Φ−1(B)Θ(B)ǫt = Ψ(B)ǫt =
∞
∑

j=0

ψjǫt−j ,

with Ψ(B) such thatΦ(B)Ψ(B) = Θ(B). Theψj values can be found by solving
the homogeneous difference equations given by

ψj −
p
∑

k=1

φkψj−k = 0, j ≥ max(p, q + 1), (2.27)
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with initial conditions

ψj −
j
∑

k=1

φkψj−k = θj , 0 ≤ j ≤ max(p, q + 1), (2.28)

andθ0 = 1. The general solution to the equations (2.27) and (2.28), isgiven by

ψj = αj
1p1(j) + . . .+ αj

rpr(j), (2.29)

whereα1, . . . , αr are the reciprocal roots of the characteristic polynomialΦ(u) = 0,
with multiplicitiesm1, . . . ,mr respectively, and eachpi(j) is a polynomial of degree
mi − 1.

2.17 Auto-Correlation and Partial-Autocorrelation Funct ions. If yt follows a
MA(q) process, it is possible to show that the ACF is given by

ρ(k) =















1 k = 0
∑

q−k

j=0
θjθj+k

1+
∑

q

j=1
θ2

j

k = 1, . . . , q

0 k > q,

(2.30)

and so, from a practical viewpoint it is possible to identifypurely MA processes by
looking at sample ACF plots, since the estimated ACF coefficients should drop after
theq-th lag.

For general ARMA processes the autocovariance function canbe written in terms
of the general homogeneous equations

γ(k) − φ1γ(k − 1) − . . .− φpγ(k − p) = 0, k ≥ max(p, q + 1), (2.31)

with initial conditions given by

γ(k) −
p
∑

j=1

φjγ(k − j) = v

q
∑

j=k

θjψj−k, 0 ≤ k < max(p, q + 1). (2.32)

The ACF of an ARMA is obtained dividing (2.31) and (2.32) byγ(0).

The PACF can be obtained using any of the methods described inSection 2.6. The
partial autocorrelation coefficients of a MA(q) process are never zero, as opposed to
the partial autocorrelation coefficients of an AR(p) process which are zero after lag
p. Similarly, for an invertible ARMA model, the partial autocorrelation coefficients
will never drop to zero since the process can be written as an infinite order AR.

2.18 Inversion of AR Components. In contexts where data series are of reason-
able length, we can fit longer order AR models rather than ARMAor other, more
complex forms. One key reason is that the statistical analysis, at least conditional
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analyses based on assumedly fixed initial values, is much easier. The reference
analysis for AR(p) processes described previously, for example, is essentially trivial
compared with the numerical analysis required to produce samples from posterior
distributions in ARMA models (see next sections). Another driving motivation is that
longer order AR models will closely approximate ARMA forms.The proliferation of
parameters is an issue, though with longer series and possible use of smoothness pri-
ors or other constraints, such as in using subset AR models, this is not an over-riding
consideration.

If this view is adopted in a given problem, it may be useful andinformative to use
the results of an AR analysis to explore possible MA component structure using the
device of inversion, or partial inversion, of the AR model. This is described here.
Assume thatyt follows an AR(p) model with parameter vectorφ = (φ1, . . . , φp)

′,
so we can write

Φ(B)yt =

p
∏

i=1

(1 − αiB)yt = ǫt,

where theαi are the autoregressive characteristic roots. Often there will be subsets
of pairs of complex conjugate roots corresponding to quasi-periodic components,
perhaps with several real roots. Stationary components areimplied by roots with
moduli less than unity.

For some positive integerr < p, suppose that the finalp − r roots are identified
as having moduli less than unity; some or all of the firstr roots may also represent
stationary components, though that is not necessary for thefollowing development.
Then, we can rewrite the model as

r
∏

i=1

(1 − αiB)yt =

p
∏

i=r+1

(1 − αiB)−1ǫt = Ψ∗(B)ǫt,

where the (implicitly) infinite order MA component has the coefficients of the infinite
order polynomialΨ∗(u) = 1 +

∑∞
j=1 ψ

∗
ju

j , defined by

1 = Ψ∗(u)

p
∏

j=r+1

(1 − αiu).

So we have the representation

yt =
r
∑

j=1

φ∗jyt−j + ǫt +
∞
∑

j=1

ψ∗
j ǫt−j ,

where thernew AR coefficientsφ∗j are defined by the characteristic equationΦ∗(u) =
∏r

i=1(1 − αiu) = 0. The MA termsψ∗
j can be easily calculated recursively, up to

some appropriate upper bound on their number, sayq. Explicitly, they are recursively
computed as follows:

• for i = 1, . . . , q, takeψ∗
i = 0 for i = 1, 2, . . . , q; then,
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• for i = r + 1, . . . , p,

– updateψ∗
1 = ψ∗

1 + αi, and then,

* for j = 2, . . . , q, updateψ∗
j = ψ∗

j + αiψ
∗
j−1.

Supposeφ is set at some estimate, such as a posterior mean, in the AR(p) model
analysis. The above calculations can be performed for any specified value ofr to
compute the corresponding MA coefficients in an inversion tothe approximating
ARMA(r, q) model. If the posterior forφ is sampled in the AR analysis, the above
computations can be performed repeatedly for all sampledφ vectors, so producing
corresponding samples of the ARMA parametersφ∗ andψ∗. Thus, inference in
various relevant ARMA models can be directly, and quite easily, deduced by inversion
of longer order AR models. Typically, various values ofr will be explored. Guidance
is derived from the estimated amplitudes and, in the case of complex roots, periods of
the roots of the AR model. Analyses indicating some components that are persistent,
i.e. that have moduli close to unity and, in the cases of complex roots, longer periods,
suggest that these components be retained in the AR description. The remaining
roots, corresponding to high frequency characteristics inthe data with lower moduli
and, if complex, high frequency oscillations, are then the candidates for inversion to
what will often be a low order MA component. The calculationscan be repeated,
sequentially increasingq and exploring inferences about the MA parameters, to assess
a relevant approximating order.

Example 2.18.1Exploring ARMA structure in the EEG data.

It is of interest to enquire as to whether or not the residual noise structure in the EEG
series may be adequately described by alternative moving average structure with,
perhaps, fewer parameters than the above 8 or more in the AR description. This can
be initiated directly from the AR analysis by exploring inversions of components of
the auto-regressive characteristic polynomial, as follows.

For any AR parameter vectorφ, we have the model

φ(B)yt =
8
∏

i=1

(1 − αiB)yt = ǫt

where, by convention, the roots in order of decreasing moduli. In our AR(8) analysis
there is a key and dominant component describing the major cyclical features that has
modulus close to unity; the first two roots are complex conjugates corresponding to
this component, the reference estimate ofφ produces an estimated modulus of 0.97
and frequency of 0.494. Identifying this as the key determinant of the AR structure,
we can write the model as

2
∏

i=1

(1 − αiB)yt =

8
∏

i=3

(1 − αiB)−1ǫt = Ψ∗(B)ǫt,
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where the infinite order MA component is defined via

1 = Ψ∗(u)

8
∏

j=3

(1 − αiu).

So we have the representation

yt = φ∗1yt−1 + φ∗2yt−2 + ǫt +

∞
∑

j=1

ψ∗
j ǫt−j ,

whereφ∗1 = 2r1 cos(ω1) and φ∗2 = −r21 , with (r1, ω1) being the modulus and
amplitude of the dominant cycle; in our case, the reference posterior mean from the
fitted AR(8) model indicates values close toφ∗1 = 1.71 andφ∗2 = −0.94. The MA
termsψ∗

j can be easily calculated recursively, as detailed above.

This can be done for any specified AR(8) vectorφ. Note that the roots typically
are complex, though the resultingψ∗

j must be real-valued. Note also that theψ∗
j will

decay rapidly so thatq in the recursive algorithm is often rather moderate. Figure
2.13 displays a summary of such calculations based on the existing AR(8) analysis.
Here q = 8 is chosen, so that the approximating ARMA model is ARMA(2, 8),
but with the view that the MA term is almost necessarily over-fitting. The above
computations are performed in parallel for each of the 5,000φ vectors sampled from
the reference posterior. This provides a Monte Carlo sampleof size 5,000 from the
posterior for the MA parameters obtained via this inversiontechique. For eachj, the
sample distribution of values ofψ∗

j is summarised in Figure 2.13 by the vertical bar
and points denoting approximate 90% intervals, 50% intervals and median. Note the
expected feature that only rather few, in this case really only 2, of the MA coefficients
are non-negligible; as a result, the inversion methods suggests that the longer order
AR model is an approximation to a perhaps more parsimonious ARMA(2, 2) form
with AR parameters near 1.71 and−0.94, and with MA parameters around 1.4 and
−0.6.

This analysis is supported by an exploratory search across ARMA(p, q) models
for p andq taking values between 1 and 8. This can be done simply to produce rough
guidelines as to model order using the conditional and approximate log-likelihood
and AIC computations, for example. Conditioning on the first16 observations in
each case, the AIC values so computed are actually minimisedat p = q = 2, so
supporting the approach above. This model very significantly dominates others with
p ≤ 2, with AIC values differing by at least 5 units. The differences are far less for
higher order models, and indeed a range of models withp = 3 or 4 come close on
the AIC scale, with the ARMA(4, 7) being the closest, less than one unit away on the
AIC scale.

The approximate MLEs of the ARMA(2, 2) parameters, based on this conditional
analysis in R (R Development Core Team, 2004), are 1.70 (0.03) and−0.92 (0.03)
for the AR component, and 1.37 (0.06) and−0.51 (0.06) for the MA. These agree
well with the inversion of our Bayesian AR(8) analysis. Note that the inversion
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Fig. 2.13 Approximate posterior intervals for the first 8 MA coefficients from a partial
inversion of the reference AR(8) analysis of the EEG series. Vertical bars display approximate
90% highest posterior density intervals, the marks denote 50% intervals and the dots denote
posterior medians
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approach directly supplies full posterior inferences, through easily implemented
posterior simulations, in contrast to likelihood approaches. Note that this analysis
could be repeated for higher order AR models. Proceeding to AR(10) or AR(12)
produces models more taylored to minor noises features of the data. Subsequent
inversion suggests possible higher order refinements, e.g., an ARMA(3, 3) model,
though the global improvements in data fit and description are minor. Overall, though
some additional insights are gleaned from exploring the MA structure, this particular
segment of the EEG series is best described by the AR(8) and further analysis should
be based on that. In other contexts, however, an ARMA structure may often be
preferred.

2.19 Forecasting and Estimation ARMA processes.

2.19.1 Forecasting ARMA models.Consider a stationary and invertible ARMA
process with parametersφ1, . . . , φp andθ1, . . . , θq. Given the stationarity and invert-
ibility conditions, it is possible to write the process as a purely AR process of infinite
order and so

yt+k =

∞
∑

j=1

φ∗jyt+k−j + ǫt+k, (2.33)

or as an infinite order MA process

yt+k =

∞
∑

j=1

θ∗j ǫt+k−j + ǫt+k. (2.34)

Lety−∞
t+k be the minimum mean square predictor ofyt+k based onyt, yt−1, . . . , y1, y0,

y−1, . . . , which we denote asy−∞:t. In other words,y−∞
t+k = E(yt+k|y−∞:t). Then,

it is possible to show that (see problem 4)

yt+k − y−∞
t+k =

k−1
∑

j=0

θ∗j ǫt+k−j , (2.35)

with θ∗0 = 1 and so, the mean square prediction error is given by

MSE−∞
t+k = E(yt+k − y−∞

t+k )2 = v

k−1
∑

j=0

(θ∗j )2. (2.36)
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For a given sample sizeT , only the observationsy1, . . . , yT are available, and so, we
consider the following truncated predictor as an approximation

y−∞,T
T+k =

k−1
∑

j=1

φ∗jy
−∞,T
T+k−j +

T+k−1
∑

j=k

φ∗jyT+k−j . (2.37)

This predictor is computed recursively fork = 1, 2, . . . , and the mean square pre-
diction error is given approximately by (2.36).

In the AR(p) case, ifT > p, the predictoryT
T+1 computed as in (2.12), given by

yT
T+1 = φ1yT + φ2yT−1 + . . .+ φpyT−p+1, (2.38)

yields to the exact predictor. This is true in general for anyk, in other words,
yT

T+k = y−∞
T+k = y−∞,T

T+k , and so, there is no need for approximations. For general
ARMA(p, q) models, the truncated predictor in (2.37) is

y−∞,T
T+k =

p
∑

j=1

φjy
−∞,T
T+k−j +

q
∑

j=1

θjǫ
T
T+k−j , (2.39)

wherey−∞,T
t = yt for 1 ≤ t ≤ T , y−∞,T

t = 0 for t ≤ 0, and the truncated prediction
errors are given byǫTt = 0 for t ≤ 0 or t > T and

ǫTt = φ(B)y−∞,T
t − θ1ǫ

T
t−1 − . . .− θqǫ

T
t−q

for 1 ≤ t ≤ T .

2.19.2 MLE and least squares estimation.For an ARMA(p, q) model we need to
estimate the parametersβ andv whereβ = (φ1, . . . , φp, θ1, . . . , θq)

′. The likelihood
function can be written as follows

p(y1:T |β, v) =
T
∏

t=1

p(yt|y1:(t−1),β, v). (2.40)

Assuming that the conditional distribution ofyt giveny1:(t−1) is Gaussian with mean
yt−1

t and varianceV t−1
t = vrt−1

t , we can write

−2 log [p(y1:T |β, v)] = T log(2πv) +

T
∑

t=1

[

log(rt−1
t ) +

(yt − yt−1
t )2

rt−1
t

]

, (2.41)

whereyt−1
t andrt−1

t are functions ofβ and so, the maximum likelihood estimates
of β andv are computed by minimizing the expression (2.41) with respect toβ and
v. The equation (2.41) is usually a non-linear function of theparameters and so, the
minimization has to be done using a non-linear optimizationalgorithm such as the
Newton-Raphson algorithm described in Chapter 1.
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Least squares (LS) estimation can be performed by minimising the expression

S(β) =
T
∑

t=1

(yt − yt−1
t )2

rt−1
t

,

with respect toβ. Similarly, conditional least squares estimation is performed by
conditioning on the firstp values of the seriesy1:p and assuming thatǫp = ǫp−1 =
· · · = ǫ1−q = 0. In this case we can minimize the conditional sum of squares given
by

Sc(β) =

T
∑

t=p+1

ǫt(β)2, (2.42)

whereǫt(β) = yt −
∑p

i=1 φiyt−i −
∑q

j=1 θjǫt−j(β). Whenq = 0 this reduces to a
linear regression problem and so, no numerical minimisation technique is required.
When the number of observationsT is not very large conditioning on the first initial
values will have an influence on the parameter estimates. In such cases working with
the unconditional sum of squares might be preferable. Several methodologies have
been proposed to handle unconditional least squares estimation. In particular, Boxet
al. (1994, Appendix A7.3) showed that an approximation to the unconditional sum
of squaresS(β) is

S(β) =

T
∑

t=−M

ǫ̂2t (β), (2.43)

with ǫ̂t(β) = E(ǫt|y1:n) and ift ≤ 0 these values are obtained by backcasting. Here
M is chosen to be such that

∑−M
t=−∞ ǫ̂2t (β) ≈ 0.

A Gauss-Newton procedure (see Shumway and Stoffer, 2000, Section 2.6 and
references therein) can be used to obtain an estimate ofβ, say β̂, that minimises
S(β) or Sc(β). For instance, in order to find an estimate ofβ that minimises
the conditional sum of squares in (2.42), the following algorithm is repeated by
computingβ(j) at each iterationj = 1, 2, . . . , until convergence is reached

β(j) = β(j−1) + ∆(β(j−1)),

where

∆(β) =

∑T
t=p+1 zt(β)ǫt(β)

∑T
t=p+1 z′t(β)zt(β)

and

zt(β) =

(

−∂ǫt(β)

∂β1
, . . . ,−∂ǫt(β)

∂βp+q

)′

. (2.44)
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Convergence is considered to be achieved when|β(j+1) − β(j)| < δβ , or when

|Qc(β
(j+1))−Qc(β

(j))| < δQ,whereδβ andδQ are set to some fixed small values.

Here,Qc(β) is a linear approximation ofSc(β) given by

Qc(β) =

T
∑

t=p+1

[

ǫt(β
(0)) − (β − β(0))′zt(β

(0))
]2

andβ(0) is an initial estimate ofβ.

Example 2.19.1Conditional LS estimation of the parameters of an ARMA(1, 1).

Consider an stationary and invertible ARMA(1, 1) process described by

yt = φ1yt−1 + θ1ǫt−1 + ǫt,

with ǫt ∼ N(0, v). Then, we can writeǫt(β) = yt − φ1yt−1 − θ1ǫt−1(β), with
β = (φ1, θ1)

′. Additionally, we condition onǫ0(β) = 0 andy1. Now, using the
expression (2.44) we have thatzt = (zt,1, zt,2)

′ with zt,1 = yt−1 + θ1zt−1,1 and
zt,2 = ǫt−1 + θ1zt−1,2, wherez0 = 0. The Gauss-Newton algorithm starts with

some initial value ofβ(0) = (φ
(0)
1 , θ

(0)
1 )′ and then, at each iterationj = 1, 2, . . . , we

have

β(j+1) = β(j) +

∑T
t=2 zt(β)ǫt(β)

∑T
t=2 z′t(β)zt(β)

.

2.19.3 State-Space representation and Kalman-Filter estimation. Due to the
computational burden of maximising the exact likelihood given in (2.40), many of
the existing methods for parameter estimation in the ARMA modelling framework
consider approximations to the exact likelihood, such as the backcasting method of
Box et al. (1994). There are also approaches that allow the computation of the
exact likelihood function. Some of these approaches involve rewriting the ARMA
model in state-space or dynamic linear model (DLM) form, andthen applying the
Kalman filter to achieve parameter estimation (see for example Kohn and Ansley,
1985; Harvey, 1981 and Harvey, 1991).

A state-space or DLM model is usually defined in terms two equations, one that
describes the evolution of the time series at the observational level, and another
equation that describes the evolution of the system over time. One of the most useful
ways of representing the ARMA(p, q) model given in (2.26) is by writing it in the
state-space or DLM form given by the following equations

yt = E′
mθt

θt = Gθt−1 + ωt, (2.45)

whereEm = (1, 0, . . . , 0)′ is a vector of dimensionm, withm = max(p, q+ 1), ωt

is also a vector of dimensionm with ωt = (1,θ1, . . . ,θm−1)
′ǫt andG is anm×m
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matrix given by

G =











φ1 1 0 . . . 0
φ2 0 1 . . . 0
...

...
...

. . .
...

φm−1 0 0 · · · 0











.

Hereφr = 0 for all r > p andθr = 0 for all r > q. The evolution noise has a
variance-covariance matrixU given byU = σ2(1, θ1, . . . , θm−1)

′(1, θ1, . . . , θm−1).

Using this representation it is possible to perform parameter estimation for general
ARMA(p, q) models. We will revisit this topic after developing the theory of DLMs
in Chapter 4.

2.19.4 Bayesian Estimation of ARMA processes.There are several approaches
to Bayesian estimation of general ARMA models, e.g., Zellner (1996), Boxet al.
(1994), Monahan (1983), Marriott and Smith (1992), Marriott et al. (1996), Chib
and Greenberg (1994) and Barnettet al. (1997).

We briefly outline the approach proposed in Marriottet al. (1996) and discuss
some aspects related to alternative ways of performingBayesian estimation in ARMA
models. Such approach leads to parameter estimation of ARMA(p, q) models via
Markov chain Monte Carlo by reparameterising the ARMA parameters in terms of
partial autocorrelation coefficients. Specifically, letf(y1:T |ψ∗) be the likelihood for
the T observations given the vector of parametersψ∗ = (φ′,θ′, σ2, x′0, ǫ

′
0), with

ǫ0 = (ǫ0, ǫ−1, . . . , ǫ1−q)
′. This likelihood function is given by

f(y1:T |ψ∗) = (2πσ2)−T/2exp

{

− 1

2σ2

T
∑

t=1

(yt − µt)
2

}

, (2.46)

where,

µ1 =

p
∑

i=1

φiy1−i +

q
∑

i=1

θiǫ1−i,

µt =

p
∑

i=1

φiyt−i +

t−1
∑

i=1

θi(yt−i − µt−i) +

q
∑

i=t

θiǫt−i, t = 2, . . . , q,

µt =

p
∑

i=1

φiyt−i +

q
∑

i=1

θi(yt−i − µt−i), t = q + 1, . . . , T.

The prior specification is as follows

π(ψ∗) = π(x0, ǫ0|φ,θ, σ2)π(σ2)π(φ,θ),
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with π(x0, ǫ0|φ,θ, σ2) = N(0, σ2Ω), π(σ2) ∝ σ−2 andπ(φ,θ) a uniform distri-
bution in the stationary and invertibility regions of the ARMA process denoted byCp

andCq, respectively. Therefore, the joint posterior forψ∗ is given by

π(ψ∗|y1:T ) ∝ (σ2)−(T+2)/2exp

{

− 1

2σ2

T
∑

t=1

(yt − µt)
2

}

× (2.47)

N((x′0, ǫ
′
0)

′|0, σ2Ω) (2.48)

The MCMC algorithm to perform parameter estimation can be summarized in
terms of the following steps:

• Sample(σ2|φ,θ, x0, ǫ0). This is done by samplingσ2 from the inverse-
Gamma full conditional distribution with the following form

IG

(

T + p+ q

2
,
1

2

[

(

x0

ǫ0

)′

Ω−1

(

x0

ǫ0

)

+

T
∑

t=1

(yt − µt)
2

])

• Sample(x0, ǫ0|φ,θ, σ2). The full conditional distribution of(x′0, ǫ
′
0) is a

multivariate normal, however, it is computationally simpler to use Metropolis
steps with Gaussian proposal distributions.

• Sample(φ,θ|σ2, x0, ǫ0). In order to sampleφ andθ, successive transfor-
mations forCp andCq to p-dimensional andq-dimensional hypercubes and
then toRp andRq, respectively, are considered. The transformations ofCp

andCq to thep-dimensional andq-dimensional hypercubes were proposed by
Monnahan (1984), extending the work of Barndorff-Nielsen and Schou (1973).
Specifically, the transformation for the AR parameters is given by

φ(i, k) = φ(i, k − 1) − φ(k, k)φ(k − i, k − 1), i = 1, . . . , k − 1,

whereφ(k, k) is the partial autocorrelation coefficient andφ(j, p) = φj , thej-
th coefficient from the AR(p) process defined by the characteristic polynomial
Φ(u) = 1− φ1u− . . .− φpu

p. The inverse transformation in iterative form is
given by

φ(i, k − 1) = [φ(i, k) + φ(k, k)φ(k, k − i)]/[1 − φ2(k, k)],

and the Jacobian of the transformation is

J =

p
∏

i=1

(1 − φ(k, k)2)[(k−1)/2]

[p/2]
∏

j=1

(1 − φ(2j, 2j)).

Now, the stationarity condition onφ can be written in terms of the partial
autocorrelation coefficients as|φ(k, k)| < 1 for all k = 1, . . . , p. Marriott et
al. (1996) then propose a transformation fromrφ = (φ(1, 1), . . . , φ(p, p))′ to
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r∗φ = (φ∗(1, 1), . . . , φ∗(p, p))′, with r∗φ ∈ Rp. Theφ∗(j, j) elements are given
by

φ∗(j, j) = log

(

1 + φ(j, j)

1 − φ(j, j)

)

.

Similarly, a transformation fromθ to r∗θ ∈ Rq can be defined using the previous
two steps replacingφ by θ.

Then, instead of samplingφ andθ from the constrained full conditional dis-
tributions, we can sample unconstrained full conditional distributions forr∗φ
and r∗θ on Rp andRq, respectively. Marriottet al. (1996) suggest using a
Metropolis step as follows. First, compute MLE estimates ofφ andθ, say
(φ̂, θ̂), with its asymptotic variance covariance matrixΣ(φ̂,θ̂). Use the trans-

formations described above to obtain(r̂∗φ̂, r̂
∗
θ̂) and a corresponding variance

covariance matrixΣ∗ (computed via the delta method). Letgp+q(r∗φ, r
∗
θ) be

thep+ q-dimensional multivariate normal distribution with mean(r̂∗φ̂, r̂
∗
θ̂) and

variance covariance matrixΣ∗. Takegp+q to be the proposal density in the
Metropolis step build to sampler∗φ andr∗θ .

Example 2.19.2Bayesian estimation in an ARMA(1,1).

Consider an ARMA(1,1) model described byyt = φyt−1 + θyt−1 + ǫt, with
N(ǫt|0, σ2). In this casex0 = y0, ǫ0 = ǫ0, rφ = φ, rθ = θ, r∗φ = φ∗, r∗θ = θ∗,

Ω =

(

1 1

1 (1+θ2+2φθ)
(1−φ2)

)

, φ∗ = log

(

1 + φ

1 − φ

)

, θ∗ = log

(

1 + θ

1 − θ

)

,

and the inverse of the determinant of the Jacobian of the transformation is given by
(1 − φ2)(1 − θ2)/4.

Discussion and Further Topics

2.20 ARIMA Models
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2.21 ARFIMA Models

Appendix

The Reversible Jump MCMC algorithm. In general, the RJMCMC method can
be described as follows. Assume thatθ is a vector of parameters to be estimated
andπ(dθ) is the target probability measure, which often is a mixture of densities, or
a mixture with continuous and discrete parts. Suppose thatm = 1, 2, . . . , indexes
all the possible dimensions of the model. If the current state of the Markov chain
is θ and a move of typem and destinationθ∗ is proposed from a proposal measure
qm(θ, dθ∗), the move is accepted probability

αm(θ,θ∗) = min

{

1,
π(dθ∗)qm(θ∗, dθ)

π(dθ)qm(θ, dθ∗)

}

.

For cases in which the move type does not change the dimensionof the parameter,
the expression above reduces to the Metropolis-Hastings acceptance probability,

α(θ,θ∗) = min

{

1,
p(θ∗|y1:n)q(θ∗|θ)
p(θ|y1:n)q(θ|θ∗)

}

,

wherep(·|y1:n) denotes the target density of posterior density in our case.If θ is a
parameter vector of dimensionm1 andθ∗ a parameter vector of dimensionm2, with
m1 6= m2, the transition betweenθ andθ∗ is done by generatingu1 of dimension
n1 from a densityq1(u1|θ), andu2 of dimensionn2 from a densityq2(u2|θ∗), such
thatm1 + n1 = m2 + n2. Now, if J(m,m∗) denotes the probability of a move of
typem∗ given that the chain is atm, the acceptance probability is

α(θ,θ∗) = min

{

1,
p(θ∗,m2|y1:n)J(m1,m2)q2(u2|θ∗)
p(θ,m1|y1:n)J(m2,m1)q1(u1|θ)

∣

∣

∣

∣

∂(θ∗, u2)

∂(θ, u1)

∣

∣

∣

∣

}

.

Problems

1. Consider the AR(1) process. If|φ| < 1 the process is stationary and it
is possible to writeyt =

∑∞
j=1 φ

jǫt−j . Use this fact to prove thaty1 ∼
N(0, v/(1 − φ2)) and so, the likelihood function has the form (1.17).
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2. Consider an AR(2) process with AR coefficientsφ = (φ1, φ2)
′. Show that the

process is stationary for parameter values lying in the region−2 < φ1 < 2,
φ1 < 1 − φ2 andφ1 > φ2 − 1.

3. Show that the general solution of a homogeneous difference equation of the
form (2.8) has the form (2.9).

4. Show that equations (2.35) and (2.36) hold by taking expected values in (2.33)
and (2.34) with respect to the whole past historyy−∞,t.

5. Consider the ARMA(1,1) model described by

yt = 0.95yt−1 + 0.8ǫt−1 + ǫt,

with ǫt ∼ N(0, 1) for all t.

(a) Show that the one-step-ahead truncated forecast is given by yt,−∞
t+1 =

0.95yt + 0.8ǫt,−∞
t , with ǫt,−∞

t computed recursively viaǫt,−∞
j = yj −

0.95yj−1 − 0.8ǫt,−∞
j−1 , for j = 1, . . . , t with ǫt,−∞

0 = 0 andy0 = 0.

(b) Show that the approximate mean square prediction error is

MSEt,−∞
t = v

[

1 +
(φ + θ)2(1 − φ2(k−1))

(1 − φ2)

]
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