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Abstract 

The volatility surface implied by option prices presents a structure that changes over 

time. The aim of this study is to present a framework to model the implied volatility 

of the FTSE options in real time, and to present a prototype application that 

implements this framework. We adapt the parametric models presented in Dumas et 

al (1998) to estimate the surfaces across moneyness instead of across strikes. We 

discuss how this framework can be used in applications of option pricing and risk 

management. 
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1. Introduction 

 

According to the classic Black-Scholes option pricing model (1973), all option prices 

on the same underlying asset with the same expiration date but with different exercise 

prices should have the same implied volatility, and therefore, plotted as a surface, it 

should be flat. However, this is not what is observed from traded option prices, and it 

is well documented that it exhibits a smile across strikes, and term structure across 

time to maturity (Cont and Fontseca, 2001). Regardless of the invalid constant 

volatility assumption of the Black-Scholes model, in practice, the implied volatility 

can be obtained by inverting the Black-Scholes formula given the market price of the 

option. As presented by Rebonato (1999), the implied volatility is the ‘wrong number 

to plug into the wrong formula to get the right price’. In order to obtain an implied 

volatility for any given strike and maturity, it is necessary to interpolate or smooth the 

discrete data from the few options actively traded. Derman & Kani (1994), Dupire 

(1994) and Rubinstein (1994) have presented models where the volatility of the 

underlying asset is a deterministic function of the asset price and time, and have 

developed a volatility function that has the potential of fitting the observed cross-

section of option prices. More recent studies have used parametric models to fit the 

implied volatilities. Ncube (1996) estimated the FTSE 100 time-varying volatility 

using OLS regression on both time to maturity and strike price. The model depended 

on strike and the first and second powers of time to maturity. Similarly, Dumas et al 

(1998) proposed several volatility functions, as functions of both strike and time to 

expiration, for S&P 500 options. In a more recent study, Peňa et al (1999) estimated 

the volatility function for the Spanish index IBEX-35 with six alternative structural 

forms, but only as a function of moneyness. 

 

This paper is organized as follows: the next section contains a description of the 

model, which is based on the adaptation of the parametric models from Dumas et al 

(1998) to estimate the surfaces across moneyness instead of across strikes. The data 

are described in Section 3. The estimation results of the volatility surfaces and implied 

densities are discussed in Section 4. Section 5 presents the application specifications 

and some details of our implementation of the mode. In Section 6 we explain how this 

model can be used in the areas of option pricing and risk management. We finally 

conclude in Section 7 and propose future extensions to our model. 
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2. The model 

 

2.1 Obtaining the of implied volatility with the Newton-Raphson algorithm 

 

Recall that the Black-Scholes European call option formula is 
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where S0 is the underlying asset (in our case, the FTSE 100 index), q is the expected 

dividends paid over the option’s life, X is the option’s strike price, T is the time to 

expiration, r is the risk-free interest rate,  
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σ is the volatility rate, and N(d) is the cumulative unit normal density function with 

upper integral limit d. The implied Black-Scholes volatility can be found uniquely 

from traded option prices because of the monotonicity of the Black-Scholes formula 

in the volatility parameter: 
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The Newton-Raphson algorithm provides a numerical way to invert the Black-Scholes 

formula in order to recover σ from the market prices of the call option C (or Put 

option P) 

  
0)()( =−= CBSf σσ . 

 
The Visual Basic implementation of this algorithm can be found in Appendix C. This 

algorithm implementation is more efficient than the function in the MatLab Financial 

toolbox, since it checks for arbitrage violations before starting the iterations. MatLab 

takes especially longer when the option price violates the arbitrage condition, that is, 

the price of the call is smaller than Black-Scholes price in the limit of zero volatility: 
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2.2 Implied dividend yield and interest rate 

 

A stock index can be considered as the price of portfolio of stocks that pay dividends. 

If  q is the dividend yield rate on the portfolio represented by the index during the life 

of the contract (expressed with continuous compounding), the equation for the futures 

price Fo is: 
Tqr

oo eSF )( −=  
 
The put-call parity for an option on an index is equivalent to the one for an option on 

a stock paying dividend yield at rate q: 
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Theoretically, the implied dividend yield q and interest rate r can be retrieved by 

simultaneously solving the above system of equations. In total, there are four prices 

that need to be used: a call option and a put option with the same strike, the futures 

contract with the same expiry date as the options, and the underlying index price, S0. 

By using price triplets with different expiry dates, one would be able to construct the 

dividend yield and interest rate curve, and extrapolate from that curve the r and q 

values for any given time to maturity. 

 

However, in practice it is rather difficult to obtain synchronized price triplets, since 

only one of the FTSE 100 futures contracts is heavily traded (the one closest to 

expiration), and only a small range of options are continuously traded (the options 

close to at the money, and close to expiration). Therefore, the interest rate and 

dividend yield cannot be obtained by using this approach. The values of these 

parameters quoted in DataStream will be used instead. 

 

2.3 Construction of smooth volatility surfaces 

 

As presented in the introduction, several studies fitted parametric volatility functions 

to observed implied volatilities. We are interested, as in Dumas et al (1998) in 

estimating the volatility across two dimensions: time to expiration and strike. 

However, according to Cont (2002), implied volatility patterns across moneyness vary 

less in time than when expressed as a function of the strike. Therefore, we will test the 
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models presented in Dumas et al (1998) in the FTSE 100 index, but modifying the 

parametric forms so they are a function of moneyness instead of a function of strike. 

 

Also, there is an additional computational benefit on doing the regression on 

moneyness rather than on strike prices, since the function is of a simpler form, and 

therefore, the estimation algorithm converges faster. 

 

We will study the following three models: 

 
Model 0: εβσ += 0),( TMN  
Model 1: εβββσ +++= 2

210),( MNMNTMN  
Model 2:  εβββββσ +++++= MNTTMNMNTMN 43

2
210),(  

 
Model 0 is the volatility function representing the constant volatility model of Black-

Scholes, that yields a constant volatility regardless of the level of moneyness and time 

to maturity. Model 1 attempts to capture the quadratic volatility smile across 

moneyness, and Model 2 captures additionally the variation across the time 

dimension, as well as a combined effect of time and moneyness. The moneyness is 

defined according to Gross and Waltners (1995) as ( ) TKFMN /)/log(= . 

 
In principle, call and put options should yield the same implied volatility, based on the 

Call Put parity theorem. Some argue (Ncube, 1996) that since the put option is a 

natural hedging instrument, investors may be willing to pay more for it, and therefore, 

its implied volatility would be higher than the call counterpart. However, we will not 

take into account this possible bias in our model, since we are interested in obtaining a 

more generic solution, from which both call and put options can be priced. 

 

The interpretation of the coefficients in this model is as follows. The parameter 

0β present in all models is the constant of the regression. In Models 1 and 2, the smile 

across moneyness is captured by a second order function that represents the parabolic 

shape of the smile. The 1β coefficient controls the displacement of the origin of the 

parabola with respect to the at-the-money (ATM) options, while the 2β coefficient 

controls the wideness of the smile. In Model 2, the additional coefficients 3β  and 4β  

capture the effect of time to expiration, i.e. the term structure of the implied volatility. 
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2.4 Optimization procedure 

 

To estimate the parameter vector β , which represents the coefficients of the models, 

the nonlinear least-squares function in MatLab is used. The algorithm in this function 

minimizes the sum of squares error (SSE) between observations yi and the model’s 

prediction for the i-th observation prdi(w) for a given parameter vector β: 
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where prdi(w) is the user-defined function that implements each specific model of the 

volatility surface equation. This statistic measures the total deviation of the 

observations from the estimated surface. To examine the goodness of fit statistics, we 

can then calculate the R2 statistic, which is a measure of how successful the fit is in 

explaining the variation of the data, that is, it measures the fraction of the variance in 

the data that is explained by the regression. The R2 statistic, for the nonlinear least-

squares estimation, is defined as the square of the correlation between the 

observations (Greene, 2000:420), and is calculated with the following equation: 
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3. The data 

 

The data set used to calibrate the volatility surfaces is comprised of option prices, 

futures prices and the FTSE 100 index for five days, between 19th of April to 23rd of 

April 2004. Each price was time-stamped with the exact time when the transaction 

took place, and therefore, we were able to match the option prices with the underlying 

price at the time the option was traded, in order to calculate the individual implied 

volatilities. The results we report in this study are for end of day prices, even though 

our application is able to estimate the volatility surface in real time during the trading 

day. Very few options were continuously traded, so at the end of the day, the latest 

price for most options is from sometime in the middle of the day. There were, in 

average, 100 different option contracts traded every day, with the ones close to 

maturity and at the money being traded most frequently. 
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4. Results 

 

4.1 Estimated volatility surfaces 

 

Each of the three models was estimated for each of the five days in the data set, using 

the estimator described in the section 2. Table 1 below shows the estimated constant 

parameter for Model 0, and Figure 1 below shows the implied volatility surface for 

19th April 2004. As expected, the volatility surface is a simple flat surface. 

Nevertheless, this benchmark model will be used for comparison purposes. 

 

Date Parameters RMSE R2 

 0β    

19-Apr-04 0.1236 0.0306 
(0.0786) 0 

20-Apr-04 0.1205 0.0328 
(0.1139) 0 

21-Apr-04 0.1307 0.0375 
(0.1589) 0 

22-Apr-04 0.1247 0.0309 
(0.0952) 0 

23-Apr-04 0.1214 0.0340 
(0.1088) 0 

Table 1: Estimated parameters for Model 0, average root mean squared errors RMSE 
(with value of the squared 2-norm of the residual in parentheses), and R2 statistic. 

 

 
Figure 1: Estimated implied volatility surface for Model 0 on 19th April 2004.  

The blue circles represent the observed implied volatilities. 
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The estimation results for Model 1 can be found in Table 2 below. When comparing 

the RMSE values of Model 0 with Model 1, we can see that Model 1, with an RMSE 

of 1.63%, is a considerable improvement over Model 0, which had an average RMSE 

of 3.33%, by more than halving the RMSE statistic. The RMSE values are for an 

average implied volatility of 12.42%. If we look at the goodness of fit of Model 1 

with the R2 statistic, the model has an average value of 0.8637, that is, it is able to 

explain 75.25% of the variance on the implied volatility. The benchmark model has 

an R2 of zero, since it is a constant function. 

 
Date Parameters RMSE R2 

 0β  1β  2β    

19-Apr-04 0.1122 0.1341 0.4235 0.0138 
(0.0159) 0.7976 

20-Apr-04 0.1105 0.1927 0.1421 0.0144 
(0.0218) 0.8084 

21-Apr-04 0.1162 0.2003 0.1479 0.0178 
(0.0359) 0.7742 

22-Apr-04 0.1132 0.1001 0.3381 0.0188 
(0.0355) 0.6272 

23-Apr-04 0.108 0.1802 0.1271 0.0168 
(0.0266) 0.7551 

Table 2: Estimated parameters for Model 1, average root mean squared errors RMSE 
(with value of the squared 2-norm of the residual in parentheses), and R2 statistic. 

 

 
Figure 2: Estimated implied volatility surface for Model 1 on 19th April 2004.  

The blue circles represent the observed implied volatilities. 
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And finally, the estimated parameters for Model 2, and a sample implied volatility 

surface, can be found in Table 3 and Figure 2 below. The implied volatility surface 

corresponding to Model 2 for each of the 5 days can be found in Appendix A. The 

average RMSE for Model 2 is 1.11%, with an average R2 statistic of 88.33%. This 

model, with two additional parameters to capture the term structure dependency, 

results on a 30% reduction of the RMSE with respect to Model 1, and on a 13% 

improvement on explaining the variance of the volatility. 

 
Date Parameters RMSE R2 

 0β  1β  2β  3β  4β    

19-Apr-04 0.096 0.0675 0.5961 0.0374 0.2599 0.0083 
(0.0058) 0.9261 

20-Apr-04 0.0952 0.1257 0.3576 0.0333 0.2039 0.0082 
(0.0071) 0.9379 

21-Apr-04 0.102 0.1418 0.3307 0.0284 0.1836 0.0132 
(0.0197) 0.8763 

22-Apr-04 0.099 0.0408 0.4671 0.0272 0.2762 0.0140 
(0.0195) 0.7955 

23-Apr-04 0.0951 0.1345 0.3098 0.023 0.1138 0.0117 
(0.0129) 0.8810 

Table 3: Estimated parameters for Model 1, average root mean squared errors RMSE 
(with value of the squared 2-norm of the residual in parentheses), and R2 statistic. 

 

  
Figure 3: Estimated implied volatility surface for Model 2 on 19th April 2004.  

The blue circles represent the observed implied volatilities. 
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4.2 The implied probability density function 

 

We now look at the corresponding risk-neutral probability density function by using 

the Breeden and Litzenberger (1978) result, which gives the relationship between the 

European option prices and the risk-neutral probability distribution. This result states 

that the second derivative of the European call price function C taken with respect to 

its strike price K is equal to the continuously discounted risk-neutral distribution 

)(Kf Q  for the price of the underlying at maturity 

 

)(2

2

Kfe
K
C QrT−=

∂
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where T is the remaining time to maturity. Since we have a closed form solution for 

the volatility (as a function of moneyness and time to expiration), we can compute 

this derivative analytically (see Appendix D for the Mathematica notebook) 

 

There is only one FTSE 100 futures contract that is heavily traded in LIFFE, and 

therefore, we can only use the put-call parity relationship for options that expire in the 

same day as the closest futures contract. The futures contract closer to expiration was 

the 18th June 2004 contract. We only calculate the density function for Model 2, since 

it was the one that best fitted the data. The density function, plotted across all strike 

prices, becomes negative for strikes lower than 1600. However, the area of interest is 

the one for which the option prices are available. In our data set, this range is from 

4000 to 5000. Therefore, the density function will be truncated, and only the relevant 

section, highlighted in a dashed rectangle in Figure 4, will be used.  

 

 
Figure 4: implied density function for Model 2 across all strikes. 
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To ensure that it is a consistent probability measure, we must enforce that the 

probabilities add up to 1, that is, 1)(
max

min
=∫

K

K
Kf . We can enforce this constraint by 

dividing the density function by the area under the curve, in order to normalize it.  

Figure 5 shows the final implied density function, after being truncated and 

normalized.  
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Figure 5: Implied density versus normal density on 19th April 2004 

 

The implied density function satisfies the risk neutral constraint since its mean is 

4308.07 approximately equal to the futures price, 4303.58, with an error of 0.1%. We 

can observe the classic stylized facts when comparing the implied density with its 

equivalent normal distribution (the dashed line): the implied density has a fatter left 

tails than the lognormal distribution, i.e. the implied distribution is more leptokurtic. 

Additionally, the distribution is skewed to the right. 

 

Implied density 
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5. Design and Implementation 

 

This section aims to give a very general outline of the application developed to 

implement the model. The technical details regarding the implementation and 

integration of the different components can be made available by the author on 

request. Selected portions of the source code are included in the Appendices. 

 

5.1 Application specification 

The functional specification for an application to implement the model in this paper 

can be summarized in the following five points:  

 

1. Download of pricing data with time-stamps in real-time, to ensure synchronized 

prices between options, and underlying and futures. 

2. Storage of prices in a local database for future reference. 

3. Calculation of implied volatilities from option prices. 

4. Estimation of implied volatility surfaces for a variety of models. 

5.  Plotting graphs and compiling statistics. 

 

5.2 Implementation 

A menu driven application with a graphical user interface that implemented the 

requirements presented above was developed as part of this project. The core of the 

application was developed in Visual Basic 6, but it was integrated with the following 

components/environments: 

- Microsoft WebBrowser control and Java RunTime to connect and download 

real-time pricing data from the ww.liffe-data.com website (quoted prices are 

delayed by 15 minutes). 

- A database was designed in MS Access to store the pricing data for options, 

futures and the index. 

- Integration with MatLab via COM permitted access the Optimization Toolbox, 

running custom MatLab programs to estimate the volatility surfaces, and to 

generate 3D graphs. 

 

The application automatically downloads prices from the LIFFE website via the 

internet, and estimates the implied volatility surface in real time.  
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6. Applications 

 

There are two main areas in finance where a real time application that calculates the 

implied volatility surface would be useful. The first one is for live pricing of exotic 

options on a trading desk, where exotic options need to be valued in consistency with 

the volatility implied by liquid traded options. The second area is risk management. 

 

6.1 Pricing path dependant exotic options with implied trees 

One application where implied volatility surfaces can be used in when constructing 

implied trees to price path dependant exotic options. The construction of implied 

binomial trees has been outlined by Derman and Kani (1994). In an implied binomial 

tree, option prices for all strikes and expirations, obtained by interpolation from the 

volatility surface, determine the position and probability of reaching each node. This 

model, even though it allows the pricing of exotic contracts consistently with known 

prices of traded vanilla options, runs into the problem of negative probabilities. There 

are several algorithms to “fix” the negative probabilities, but the model becomes very 

restrictive. A later model of implied trinomial trees was presented by Derman et al 

(1996), which avoids the negative probabilities problem by assigning an appropriate 

state space, and thus, only having to calculate the probabilities and Arrow-Debreu 

prices at each node. Regardless of which approach is used, having an accurate 

volatility surface that reflects the traded option prices is essential in order to construct 

a consistent tree and accurately price path dependant exotic options. 

 

6.2 Risk management applications: Value-at-Risk Estimation 

In risk management, one of the most widely used methods is Value-at-Risk (VaR). 

The VaR of a given portfolio summarizes the expected maximum loss over a target 

horizon within a given confidence interval. The implied volatility models estimated in 

section 4 can be used to perform VaR calculations for portfolios containing assets 

whose payoffs /returns depend on the FTSE index, since the implied volatilities 

represent an unbiased and efficient forecast of the future, average volatility (Cassese 

and Guidolin, 2003). The portfolio can contain any combination of equity shares, 

vanilla options and exotic options, and worst case future scenarios can be simulated 

using the implied volatility surface.  
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7. Conclusions and future work 

 

We have estimated three different models to the observed implied volatilities for the 

FTSE 100 options. The model that best fitted the data was Model 2, which captured 

both the smile across moneyness, as well as the term structure across time to 

expiration.  

 

A prototype application has been developed to implement the model described in this 

paper, in real-time. The estimation of the volatility surface for the parametric models 

is fast enough (around 2 seconds) to be done in real time. At this stage, our 

application calibrates the entire surface for each new observation. However, a Kalman 

filter approach could be implemented to speed up this process and use each new 

observation to update the estimated parameter vector. 

 

From the data collected, we observed that only a very small set of options are actively 

traded, and those are the contracts that are both ATM and close to expirations. As a 

consequence, at a given time during the day, we may only have recent prices for a 

small subset of options. The last traded price for options deep in of the money is 

usually from several days ago, and for options in the money, the last traded price is 

from today, but from several hours ago.  

 

Therefore, in order to obtain a more accurate estimate of the current market 

expectation of the volatility,  a future study could modify the minimization problem, 

so it uses a weighted sum of squares errors, where the weights would be inversely 

proportional of the time elapsed from the last observation, and thus, giving more 

relevance to recent observations. The older observations would still contribute to the 

overall estimation, but would have a smaller impact in defining the surface. The 

regression could minimize the following equation, where iτ  is the time elapsed since 

the option i was traded: 

∑
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Appendix A: Implied volatility surfaces for Model 2 

 
 
 
 

 
 



 - 17 - 

 
 
 
 

 



 - 18 - 

 
 

 
 
 
 
 

 
 
 
 

 



 - 19 - 

Appendix B: Newton-Raphson algorithm implementation in Visual Basic 
Adapted from a C++ implementation at: 
http://finance.bi.no/~bernt/gcc_prog/algoritms_v1/algoritms/node8.html 
 
 
Public Function calculate_implied_volatility_bisections( _ 
    s As Double, X As Double, r As Double, t As Double, option_price As Double, d As 
Double, sType As String) As Double 
     
    'check for arbitrage violations: 
    'if price at almost zero volatility greater than price, return 0 
 
    Dim sigma_low As Double 
    Dim Price As Double 
    Dim IV As Double 
    sigma_low = 0.0001 
 
    IV = -1 
     
    'calculate the price of the volatility was almost zero, to see what would be the minimum 
price 
    Select Case sType 
        Case "C":   Price = option_price_call_black_scholes(s, X, r, sigma_low, t, d) 
        Case "P":   Price = option_price_put_black_scholes(s, X, r, sigma_low, t, d) 
    End Select 
     
    If Price > option_price Then 
        IV = 0 
    Else 
        ' simple binomial search for the implied volatility. 
        ' relies on the value of the option increasing in volatility 
        Const ACCURACY = 0.00001   ' make this smaller for higher accuracy 
        Const MAX_ITERATIONS = 100 
        Const HIGH_VALUE = 10000000000# 
        Const ERROR = -1E+40 
         
        ' want to bracket sigma. first find a maximum sigma by finding a sigma 
        ' with a estimated price higher than the actual price. 
        Dim sigma_high As Double 
        sigma_high = 0.3 
        Select Case sType 
            Case "C":   Price = option_price_call_black_scholes(s, X, r, sigma_high, t, d) 
            Case "P":   Price = option_price_put_black_scholes(s, X, r, sigma_high, t, d) 
        End Select 
 
        Do While (Price < option_price) 
            sigma_high = 2# * sigma_high    'keep doubling. 
            Select Case sType 
                Case "C":   Price = option_price_call_black_scholes(s, X, r, sigma_high, t, d) 
                Case "P":   Price = option_price_put_black_scholes(s, X, r, sigma_high, t, d) 
            End Select 
            If (sigma_high > HIGH_VALUE) Then 
                GoTo ReturnValue 'return ERROR; // panic, something wrong. 
            End If 
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        Loop 
        Dim i As Integer 
        For i = 0 To MAX_ITERATIONS 
            Dim sigma As Double 
            sigma = (sigma_low + sigma_high) * 0.5 
            Select Case sType 
                Case "C":   Price = option_price_call_black_scholes(s, X, r, sigma, t, d) 
                Case "P":   Price = option_price_put_black_scholes(s, X, r, sigma, t, d) 
            End Select 
 
            Dim test As Double 
            test = (Price - option_price) 
            If (Abs(test) < ACCURACY) Then 
                IV = sigma 
                Exit For 
            ElseIf test < 0# Then 
                sigma_low = sigma 
            Else 
                sigma_high = sigma 
            End If 
        Next i 
    End If 
 
ReturnValue: 
 
    If IV >= 0 Then 
        calculate_implied_volatility_bisections = IV 
    Else 
        'return ERROR; 
        'Err.Raise 702 
        calculate_implied_volatility_bisections = -1 'IV = -1000000 
   End If 
     
End Function 
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Appendix C: Mathematica notebook to calculate the implied density function 
 
In[39]:=  

 
In[1]:=  

 
In[4]:=  

 
In[6]:=  

 
In[7]:=  

 
In[12]:=  

 
In[14]:=  

 

 

In[15]:=  

 
In[29]:=  

 
Out[29]=  

 
In[16]:=  
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In[17]:=  

 
Out[17]=  
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Appendix D: Matlab code for estimation of volatility surfaces 

%Original code by Kyriakos Chourdakis (www.theponlytail.net) 
 
function [xxx,sss,rrr,R2,residuals,resnoms] = estimateVolSurf 
(pts,WinTitle) 
% clear; 
format compact; 
 
K = pts(:,1); 
F = pts(:,2); 
C = pts(:,3); 
T = pts(:,4)/252; 
IV = pts(:,5); 
r = 0.03; 
VM = mean(IV) 
% fit volatility surface 
MN = mness(K, F, T); 
%pars = [ 1, -1, 0, VM, 1]; 
pars = [0.25, -1, 0.17, 0.10,0.20]; 
opts = optimset('Display','iter','TolFun',0.000000001); 
[x,resnorm,residual] = lsqnonlin(@iverrors,pars,[], [], opts, MN, T, 
IV) 
 
%x =pars; 
% display RMSE of parameter vector 
e = iverrors(x,MN,T,IV); 
STDERRORS = std(e); 
 
R_square = 1 - (sum(e.^2))/(sum((IV - mean(IV)).^2)) 
RMSE = sqrt(mean(e.^2)) 
 
figure('Name',WinTitle,'NumberTitle','off'); %,'Box','on'); 
 
set(gcf,'Color','w'); 
%figure(1); 
plot3(MN,T,IV,'o'); hold on; 
%[DM,TM] = meshgrid(-.2:.02:.6,0:.02:1.2); 
[DM,TM] = meshgrid(min(MN):.02:max(MN),0:.02:max(T));  
ZM = ivfitted(x, DM, TM); 
surf(DM,TM,ZM,'FaceColor','flat','EdgeColor','none'); hold off; 
%mesh(DM, TM, ZM); hold off; 
xlabel('Moneyness'); 
ylabel('Years to maturity'); 
zlabel('Implied volatility'); 
title(WinTitle); 
 
%show axis and grids 
box on; 
grid on; 
 
xxx=  x; 
sss = RMSE; 
rrr = STDERRORS; 
R2 = R_square; 
residuals = residual 
resnoms = resnorm 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function y = ivfitted(pars, MN, T) 
% The parametrized fitted surface 
 
%Connstant volatility model 
%y = pars(1) + MN.*0; 
 
%Dumas Model 1 
%y = pars(1) + pars(2)*MN + pars(3)*MN.^2; 
 
%Dumas Model 2 
%y = pars(1) + pars(2)*MN + pars(3)*MN.^2 + pars(4)*T + pars(5) * T 
.* MN; 
 
 
function y = iverrors(pars, MN, T, IV) 
% The parametrization errors 
y = ivfitted(pars, MN, T) - IV; 
 
function y = mness(K, F, T) 
% The moneyness function 
y = log(F./K) ./ sqrt(T); 
 


